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Abstract 

Imaging Ductal Carcinoma Using Hyperspectral 

 Imaging System 

Yasser M. Khouj 

 

Hyperspectral Imaging (HSI) is a non-invasive optical imaging modality that shows the potential to 

aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different 

patients were imaged by a hyperspectral system to detect spectral differences between normal and 

breast cancer tissues, as well as early and late stages of breast cancer. If the spectral differences in 

these tissue types can be measured, automated systems can be developed to help the pathologist 

identify suspect biopsy samples, which will improve sample throughput and assist in making critical 

treatment decisions. Tissue samples from ten different patients were provided by the WVU Pathology 

Department. The samples from each patient included both normal and ductal carcinoma tissue, both 

stained and unstained. These cells were imaged using a snapshot HSI system, and the spectral 

reflectances were evaluated to see if there was a measurable spectral difference between the various 

cell types. Analysis of the spectral reflectance values indicated that wavelengths near 550nm show 

the best differentiation between tissue types. This information was used to train image processing 

algorithms using supervised and unsupervised data. K-Means and Support Vector Machine (SVM) 

approaches were applied to the hyperspectral data cubes, and successfully detected spectral tissue 

differences with sensitivity of 85.45%, and specificity of 94.64% with TNR of 95.8%, and FPR of 

4.2%. These results were verified by ground truth marking of the tissue samples by a pathologist. 

This interdisciplinary work will build a bridge between pathology and hyperspectral optical 

diagnostic imaging in order to reduce time and workload on the pathologist, which can lead to benefit 

of lead reducing time, and increasing the accuracy of diagnoses.   
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Chapter 1 

 

1.Introduction 

 

Breast cancer is one of the highest cause of cancer deaths among American women [1], [2], [3], 

[4]. According to the U.S. Breast Cancer Organization, statistics show that about 1 in 8 U.S. 

women will develop invasive breast cancer over their lifetime [ 1 ] ,  [ 2] ,  [ 3 ] .  In 2016, about 

246,660 new cases of invasive breast cancer will be diagnosed in women, 61,000 new cases of 

noninvasive carcinoma will be diagnosed in situ, and 40,450 women in the U.S. are expected to 

die from breast cancer. These numbers are large enough to note that, other than lung cancer, 

breast cancer death rates are higher for the U.S. women than any other cancer [1], [2], [3]. 

 

1.1 Motivation and Objectives 

 

Hyperspectral Imaging (HSI) is a sophisticated non-invasive optical imaging modality that has the 

potential to be applied toward medical imaging research and clinical practice. From imaging labs, 

to National Institute of Health (NIH), to cancer institutes, hyperspectral imaging has been an 

optical imaging tool that is used for providing spectral information, which can help in material 

detection. Specifically, this research effort introduces a new tool that can help in breast cancer 

detection by providing pathologists with a tool that can potentially make their diagnosis process 

of ductal carcinoma under the microscope easier and more efficient [5]. This work is a 

collaboration between the Lane Dept. of Computer Science and Electrical Engineering, the WVU 

Pathology Department, and the WVU Medicine Mary Babb Randolph Cancer Center. The overall 

scope of the work is to image samples of breast cancer tissues from different patients in order to 

show the ability of the hyperspectral system to detect spectral differences between normal and 

breast cancer tissues, as well as early and late stages of cancer, which will also effect the treatment 

decision. 
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   1.1.1 Problem Statement 

The role of the pathologist is undeniably important for cancer diagnosis because their job as 

physicians is to look at body fluids and tissues in order to help oncologists as well as other medical 

specialists make a diagnosis [6]. However, as the number of breast cancer cases increases, the 

pathologist’s job will become more difficult due to the increasing number of samples they need to 

evaluate on a daily basis. Because the samples are provided via biopsy or surgical procedures, their 

schedule will have to be compatible with the surgeons’ schedule.  In addition, the pathologist will 

also need to spend time preparing the samples, stain them, and finally, examine them under a 

microscope for diagnoses.  

   1.1.2 Research Goals and Task Summary 

The goal of this study is to evaluate the performance of a snapshot hyperspectral imager to see if 

measurable differences in spectral properties can be observed between normal and various stages 

of cancerous breast tissues fixed on biopsy slides, specifically in the case of ductal carcinoma. This 

interdisciplinary work will build a bridge between pathology and hyperspectral optical diagnostic 

imaging in order to reduce time and workload on the pathologist, with a secondary benefit of 

leading to more accurate diagnoses. The hypothesis of this work that a hyperspectral imager can 

be used to spectrally determine the difference between healthy and cancerous cells on both stained 

and unstained slides, as well as spectrally determine the difference in cancer cells from varying 

stages of cancer. A secondary hypothesis is that, if these differences can be seen and verified by a 

pathologist, image processing techniques can be used to differentiate between cells in a semi-

automated fashion. This technique will not replace the pathology work, however it will help 

improve the pathologist’s workflow by pre-screening samples, allowing them to be prioritized for 

examination based on the likelihood of cancer cells being present in the image. The hyperspectral 

imaging system used for this work is a Rebellion Photonics snapshot HSI system. This camera has 

the ability to collect images of the tissue samples across a broad range of wavelengths 

simultaneously, creating what is known as a hyperspectral data cube. If spectral differences can be 

clearly identified and measured, trained algorithms can potentially sort through the wavelength-

specific images contained in the data cube and identify cancerous and non-cancerous healthy tissue 

in both stained and unstained tissue samples. This HSI system and associated image processing 

tools can potentially be used to differentiate between the stages of the cancer cells being examined 
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based on spectral reflectance differences in breast cancer cells at different stages of progression, 

which may add additional useful information for the oncologist.  

Figure 1.1 is a general concept diagram shows how the pathologist can use the HSI technology in 

order to make his or her job easier. 

 

 

 

 

Figure 1.1: Concept diagram of how HSI can aid the pathologist in cancer detection and 

diagnosis. Pictures (left to right): pathology tech [60], hyperspectral imager system at WVU, 

image processing DCIS samples, pathologist diagnosing a sample on a monitor [59].   

As Figure 1.1 explains the use of the hyperspectral imager system in the diagnosis process. 

Pathologist uses the hyperspectral system to image the prepared samples, then a trained algorithm 

is applied on the captured images, and sorts them in an order of priority (high-low) risk of breast 

cancer. Finally a pathologist will make a diagnosis decision by looking at the prioritized images 

of the biopsy samples. 

 

1.1.3 Thesis Contributions and Impact 

The tasks involved in this research are as follows: 

Task 1: Hyperspectral System Setup – This task involves two experiments for the HSI system: 

calibration and understanding how the hypercube is built with different spectral information. 

Task 2: Cellular Imaging - Stained and unstained tissue samples from normal and cancerous 

tissues from different patients were provided by the WVU Pathology Department. These cells were 

imaged using the HSI system connected to a microscope in lab of Dr. Linda Davis, and the spectral 
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reflectances were evaluated to see if there was a measurable spectral difference between the 

various cell types.  

Task 3: Image Evaluation - After imaging, the large amount of data contained in the three-

dimensional hyperspectral data cube was evaluated using image processing techniques to look at 

specific regions of interest in order to determine the spectral reflectances over the visible light 

wavelength spectrum. The image processing and HSI toolboxes are used to analyze the data with 

custom algorithms. These algorithms are a collection of machine learning algorithms for data 

mining tasks that are contained in both MATLAB and Waikato Environment for Knowledge 

Analysis (WEKA). The algorithms are used to learn the about the nature of the hyperspectral data 

in order to understand the spectral reflectance value and how it reflects the tissue samples. An 

overview of this work is given in the last section of this chapter. 

This study has shown a great potential for opening new avenues of exploration in the field of breast 

cancer optical imaging and diagnosis. Specifically, this research will add a new tool that may be 

used not only in research, but also used by pathology in breast cancer diagnoses. The 

interdisciplinary nature of the work has fostered a collaboration between the fields of Biomedical 

and Electrical Engineering, Cancer Pathology, Cancer Cell Biology, Medical Imaging and Image 

Processing, and has built a communication framework between those departments in West Virginia 

University and other educational institutes.    

 

1.2 Breast Cancer Overview 

Cancer appears in the body when cells start to grow in an abnormal way. It can grow in any part 

of the body, and spread to other areas of the body [1], [2]. Breast cancer, in fact, is considered a 

tumor that starts from an individual cell, which then starts growing and dividing to form what is 

known as malignant tumor. Learning about the anatomy of a normal breast (Figure 1.2) and how 

cancer effects normal cells helps in better understanding how cancer interact within the body. The 

female breast is made up of a variety of structures and tissues, including: lobules, which are glands 

that can produce breast milk, and ducts, which are small tubes that transfer milk from the lobules 

to the nipple, fatty and connective tissue, blood vessels, and lymph vessels [1], [2].  
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 Figure 1.2: Anatomy of female breast [2]. 

 

 

1.2.1 Types and Stages of Breast Cancer and  

There are many different types of breast cancer, such as invasive and in situ ductal carcinoma, 

invasive, pre-invasive lobular carcinoma, and the less common cases of different breast sarcomas 

[1], [2], [4]. More than 80% of breast cancer cases are ductal carcinoma, which begins in the cells 

that line the ducts [2]. Few breast cancer cases start in the cells lining the lobules. In addition, a 

fewer number of breast cancers can also start in cells of the other tissues in the breast. These are 

called sarcomas and lymphomas; however, these are not as common as the first two. Carcinomas, 

the most common breast cancer, is also called adenocarcinoma, which is a type of cancer that starts 

in the epithelial cells which line organs and tissues Sarcomas start in the cells of muscle, fat, or 

connective tissue, are considered less-common types of breast cancers [2]. Sometimes, a 

combination of different types of breast cancers may be found in one breast tumor. This research 

work has been focused on two types of breast cancer, both in situ and invasive which are: ductal 

carcinoma and lobular carcinoma [4]. Further explanation of these specific breast cancer types is 

provided in the following sections 
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Ductal carcinoma in situ (DCIS): DCIS is known as noninvasive (or sometimes, pre-invasive) 

breast cancer [2]. In situ ductal carcinoma is first detected when the cells lining the walls of the 

ducts have changed to appear abnormal.  (Figure 1.3 [7]), and (Figure 1.5 [1]) exhibit atypical 

biological, physical, and chemical behavior [7], or show drastic changes in cell-to-cell interaction 

with neighboring cells [7]. In the case of DCIS, the cancer cells stay confined inside the milk ducts. 

This characteristic is one clear difference between DCIS and invasive carcinoma; the cells have 

not spread (invaded) through the walls of the ducts into the surrounding breast tissue [1], [2], [4]. 

 

Lobular carcinoma in situ (LCIS): From the name, LCIS are tumor cells that have grown to fill 

the lobules. They grow over the cells that stay inside the milk-producing structures of the breast, 

which are lobules themselves. The in situ lobular carcinoma is not considered invasive; however, 

it is a considered a precursor for more invasive types of breast cancer [1], [2], [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1.3: Anatomy of ductal carcinoma types [2] 

Ductal carcinoma in situ (DCIS) 
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Figure 1.4: Pathology images of different types of breast cancer. (Left): High grade DCIS, (Middle): 

Invasive Ductal Carcinoma. (Right): Invasive Lobular Carcinoma [7]. 

 

 

Invasive ductal carcinoma (IDC): Invasive ductal carcinoma is the most common breast cancer, 

comprising approximately 8 out of 10 invasive breast cancers diagnoses. It first appears in a milk 

duct of the breast, then breaks out the wall of the duct and progresses to infect the fat tissues of the 

breast. It can also grow into the surrounding normal tissue inside the breast [1]. In addition, it may 

also start to metastasize, which means to spread to other parts of the body through the lymphatic 

system and bloodstream [2], [7].  

 

Invasive lobular carcinoma (ILC): Invasive lobular carcinoma occurs in the lobules which are 

the glands that produce milk. Being labeled as invasive, like IDC, it can also metastasize and 

spread to other parts of the body. Statistics show that about 1 in 10 invasive breast cancers is an 

ILC [2], [4], [7]. 

 

 

 

 

 

 

 

Figure 1.5: Abnormal duct tissue [1] 
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1.2.2 Diagnosis and Detection of Breast Cancer 

Early detection of breast cancer reduces the mortality rate and increases the survival chance. If a 

patient is diagnosed with breast cancer, post-tests are performed for the purpose of confirming the 

diagnosis, determining tumor stage & location, and to help determine the options for treatment 

planning. There are several tests and procedures used for the purpose of diagnosing, detecting, and 

confirming whether or not the patient has breast cancer. Diagnosing cancer is often not the work 

of one individual. In most cases, the diagnosis is a team effort, involving of several specialists 

from oncology, pathology, radiology, and surgery. It is critical that the following tests and 

procedures are joined together to provide the patient the best and most appropriate diagnosis and 

treatment plan that can be offered. 

A) General Physical Examination and History: A general physical exam is often performed to 

look at specific signs that could be considered abnormal, such as lumps or rashes. Also, the 

patient’s long-term, short-term, and family health history are examined for previous history of 

disease or symptoms. 

B) Clinical Breast Examination: A breast exam is performed by the primary care physician or 

other medical professional. In this procedure, the examiner carefully feels the breasts and the 

region under the arms, searching for lumps or other abnormal or suspicious conditions. 

C) Blood Chemistry Laboratory: A lab test procedure is performed on the patient’s blood sample 

which is acquired via a common venipuncture procedure. Blood is examined for abnormal 

numbers when compared to the patient’s usual, baseline blood chemistry, such as an abnormal 

increase in the number of white blood cells, or reduced amounts of oxygen production.[3]. 

D) Clinical Trials: In addition to common office procedures and laboratory testing, the patient 

can opt into clinical trials aimed evaluating new diagnostic breast cancer procedures, including: 

evaluation and testing of nipple discharge, ductal lavage, and nipple aspiration exams [8]. 

E) Biopsy Test: A biopsy is a procedure whereby sample tissue is removed from a suspect region 

identified by one of the previously described procedures. These tissue samples are then viewed 

under a microscope by a pathologist to check for signs of cancer. Multiple elements could affect 

the doctor’s decision of the best biopsy procedure. These elements, such as tumor size, location, 

and presence or extent of spreading or growth, can vary in weight when considered for decision 

making.  The following are different types of biopsy procedures [3] [7]:   

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=270871&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=689078&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=304715&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=304685&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45164&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=638184&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46244&version=Patient&language=English
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 Surgical biopsy: a surgical procedure that removes either part of a suspect lump, the whole 

lump, or just a sample of tissue. (Figure 1.6-a). 

 Core Needle Biopsy:  a wide needle (1/16 inch in diameter and 1/2 inch long) is used to 

puncture and remove a tissue sample using the cutting tip of the needle (Figure 1.5-b). 

 Fine Needle Biopsy: a very thin, hollow needle attached to a syringe (smaller than core needle) 

is used to remove a tissue or fluid sample from the targeted area (Figure 1.5-c). 

A key component to most biopsies that is relevant to this research effort is that dye is often added 

to the tissue sample. This dye enables a pathologist to easily view and evaluate the cells under a 

microscope. In many cases of breast cancer, pathologists use Hematoxylin and Eosin (H&E) dye 

(Figure 1.6 d-e).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.6: (a-c) left to right: surgical, core, and fine biopsy needle.(d-e) H&E dye, stained tissue [9] 

 

F) Medical imaging: For many decades, medical imaging has been one of the main, if not the 

main, diagnostic tools of many diseases. Development of a wide range of medical imaging 

modalities has enabled many application areas for these technologies, ranging from research to 

diagnostic imaging and treatment. Particularly, in breast cancer cases, several imaging modalities 

are used for detection, diagnosis, and the development of treatment plan to improve the quality of 

life of the breast cancer patient.  These imaging methodologies are described in detail in the next 

section. 

 

 

a b c 

d e 
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1.3 Breast Cancer and Medical Imaging   

 

Different imaging modalities are used for breast cancer, ranging from ionizing and non-ionizing 

radiation to optical imaging. A short description to some of those modalities is provided as follow: 

A) Mammogram: A mammogram is an x-ray of the breast. For this procedure, the breast is 

pressed between 2 plates to flatten and spread the tissue in order to image a large surface area of 

the breast tissue simultaneously. If the image shows any abnormal structures, the patient is urged 

to have other tests to acquire additional information that can be applied to form a diagnosis [10] 

[4]. 

B) Ultrasound: An ultrasound scan uses sound wave echoes to outline the imaged part of the 

breast tissue in order to create a picture. Ultrasound images are usually viewed in real-time to help 

locate the target for a physical biopsy [10], [11]. 

C) Breast MRI:  High magnetic field and radio waves are used to look at very deep details of 

structures within the breast, which can help in diagnosis. This technique is not the primary imaging 

tool for all breast cancer patients, it is used for extracting deeper breast structural information about 

a specific patient [10], [12]. 

D) PET/CT of the Breast: This imaging method is an advanced imaging technology that 

combines Positron Emission Tomography (PET) with Computed Tomography (CT) to detect small 

tumors. This technique is also used to evaluate patients after breast cancer has already been 

diagnosed to monitor tumor activity, such as growth or spreading [13], [10]. This technology uses 

radiopharmaceutical drugs that are attracted to the cancer cells, after the patient is injected with 

the drugs,  they can appear on the PET/CT that detects the emission photons and converts them to 

light signals that resulted by the radioactive decay [13].  

E) Optical Imaging: Many optical imaging modalities have been involved in a variety of cancer 

applications including: optical coherence tomography, confocal microscopy, multiphoton 

microscopy, multispectral and hyperspectral endoscopy, and microscopy [14], [15], [16], [17]. 

Other optical imaging methods which take advantage of the optical properties of materials and 

apply optical imaging methodologies to diffuse reflectance imaging have recently emerged with 
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significant potential for non-invasive, portable, and cost-effective imaging for biomedical 

applications spanning tissue, cellular, and molecular levels [15], [16].  

 

1.4 Hyperspectral Imaging (HSI) 
 

1.4.1 Hyperspectral Imaging: History and Overview of Operation 

Hyperspectral Imaging (HSI) is a well-studied optical imaging technology that was first developed 

for applications such as space exploration and Earth observation, satellite surveillance, agriculture, 

and industrial applications [17], [18], [19], [20]. NASA and U.S. Army scientists were the first in 

discovering and taking advantage of the spectral sensing technology. HSI technology, when 

properly exploited can provide the Army with additional and improved automated terrain 

analysis, image understanding, object detection, and material characterization capabilities, as 

shown in Figure 1.7 [17]  

 

 

Figure 1.7:  HSI remote sensing system in geographical and agricultural application [17]. 
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HSI creates a 3-dimensional data structure known as a data cube which contains the spatial image 

detail (x & y coordinates) as well as detailed spectral information along the z-axis. The spectral 

information of each co-registered pixel allows investigator to trace, detect, and extract additional 

information from a target, such as a spectral signature.  

 

1.4.2 How Hyperspectral Imaging Works 

In order to understand the operation of an HSI system, is it helpful to compare the output of a 

HSI system to a typical Red, Green, and Blue (RGB) camera or imager. RGB represent the color 

sensitivity of the imaging pixels, where red, green, and blue are combined in various proportions 

to obtain any color in the visible spectrum [21], which will also be explained later in Chapter 2 

in the section that talks about the visible light spectrum ranging in wavelength between about 

390 to 700 nm. Digital cameras have image sensors, such as CCD (charge-coupled device) and 

CMOS (complementary metal-oxide semiconductor) imaging arrays, which convert light into 

electrons to produce an image [21], [22]. As explained, the RGB images are a combination of 

different pixel intensities from discreet RGB pixels that combine to give our human eyes 

the appearance of covering the entire visible spectrum. As it is a discretized red green and 

blue image resulting from the input of a continuum of wavelengths, the image data is 

combined and smoothed in order to get one colorful image, and that will result of losing 

valuable data, which can only appear in by not combining the wavelength bands [23] [24]. 

However, in the HSI case, one image is broken down into tens or even hundreds of images 

with different wavelength channels, or bands. The images of the different bands will have details 

in each wavelength that might have been not seen by conventional RGB imagers. This is the 

main advantage of hyperspectral imaging, as shown in Figure 1.9. Hyperspectral imaging should 

not be confused with multispectral imaging. A simple way to differentiate between both terms 

is by the number of bands. Multispectral imaging often uses ~10 discreet spectral bands with 

center wavelengths separated by several nanometers of wavelength. Hyperspectral imaging uses 

a large number of spectral bands often separated by only 1-2 nm, allowing the construction of 

a hyperspectral data cube with rich, continuous spectral information. This defining 

characteristic gives the hyperspectral imagers the advantage of capturing very detailed spectral 

information for each pixel in an image, as seen in Figure 1.8.  
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Figure 1.8: RGB image wavelength intensity spectrums [23] 

 

Figure 1.9 Multispectral and Hyperspectral imaging number of bands [23] 

As HSI creates a three dimensional hypercube, depending on the capability of the HSI system, 

each pixel in the hypercube can be characterized by a spectral curve, which can range from the 

UV to IR regions as shown in Figure 1.10 [24] [25]. 
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Figure 1.10: a) hyperspectral cube. b) pixel spectrum in the spectral dimension 

 

   1.4.2.1 The development of hyperspectral imaging technology over time 

Before Snapshot Hyperspectral technology was invented, the spectral hypercube was built and 

created by what is called a line-scan hyperspectral imager [25]. There are two different types of 

line-scan technology, described as follows: 

Spatial Scanning, where two-dimensional scanning sensor output represents a full slit spectrum 

(x,λ), and scan along the y-axis. The optical slit is basically used to provide a fixed or adjustable 

aperture and controls the angle of the light which enters through. Hyperspectral imaging (HSI) 

devices for spatial scanning obtain slit spectra by projecting a strip of the scene onto a slit and 

dispersing the slit image with a prism as shown in Figure 1.11-A [26]. 

Spectral Scanning, is also a form of two-dimensional scanning sensor. However, the slit spectrum 

is in (x,y), the scan is performed along, and scan through different wavelengths (λ), which is the 

spectral dimension, more information about how to scan through different wavelengths will be 

provided in Chapter 2 . However, each 2-D sensor output represents a single-color monochromatic 

image, as shown in Figure 1.11-B [26]. 

In both types of line-scanning system, optical filters, called line filters, are integrated with the 

camera sensor, [26], [27]. In the case of the spatial scanning, line scan hyperspectral cameras scan 

the image line per line [27]. The advantage of line scanning is being able to pick and choose 

spectral bands, and having a direct representation of the two spatial dimensions of the scene in the 

a b 
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spectral scanning case [26], [27]. Line scanning systems have also been used in remote sensing, 

where it is sensible to use mobile platforms. It has also been used to scan materials in mining and 

agriculture applications [27]. The disadvantage however, line scanning system require time to scan 

through all of the wavelengths, which requires a stable camera mount and nonmoving image target. 

Time of scanning vary depends on the size of the image, the integration time, and the acquisition 

speed of the camera. System vibrations and target movement have an impact on the accuracy and 

reconstruction of the image [27]. 

 

Figure 1.11: Scanning and non-scanning to build the hypercube [53] 

 

 

Snapshot (non-scanning) hyperspectral camera 

The snapshot hyperspectral camera is able to capture an entire hyperspectral image, in which all 

of the wavelengths are captured instantly, then the hypercube is created. Snapshot hyperspectral 

technology is designed and built in different configurations than the line scan camera [27] [29]. It 

uses a prism to break up the light, and the diffracted wavelengths fall on different portions of the 

imaging sensor. Software is used to sort the varying wavelengths of light falling onto different 

pixels into wavelength-specific groups. While conventional line-scan hyperspectral cameras build 

the data cube by scanning through various filtered wavelengths, or an object, the snapshot HSI 

acquires an image, and the spectral signature at each pixel, simultaneously. Snapshot systems have 

an advantage of faster measurement, and also sensitivity improvement, so that measurements that 

were previously starved for light are now possible [53]. However, one drawback is that the 

resolution is limited by down-sampling the light falling onto the imaging array into a smaller 

number of spectral channels Figure 1.11-C shows the snapshot hypercube.  
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 For the past two decades, different research has shown the potential and effectiveness of using 

HSI technology in medical applications, which HSI has been used as a noninvasive, and 

nonionizing imaging diagnostic tool [5], [15], [17], [23]. HSI has been used in many medical 

applications in the exploration of anatomy, physiology, and pathology.  Also, beyond the visible 

spectrum, HSI can be used for optical biopsies which involve in vivo diagnosis of tissue 

without the need for sample excision and processing [5], [16], [30]. These applications take 

advantage of the spectral information contained in light that passes through (transmission) or 

reflects off of (reflection) different materials, which are fundamental properties associated with 

transmission and reflection spectroscopy [14], [15], [16] Specific to reflection spectroscopy, 

spectral reflectance is defined as the ratio of reflected energy to incident energy as a function of 

wavelength [19], [20]. These spectral reflectance curves are used for the identification of different 

materials, which is why HSI has an advantage over the other imaging systems that can’t reach 

such information [20]. More information will be provided in Chapter 2 (Theory) on how 

hyperspectral imaging works, and how spectral reflectance curves are collected to provide a 

valuable spectral information that can be used for many applications. 

 

1.4.3  Hyperspectral Imaging Applications 

 
1.4.3.1 General applications 

HSI remote sensing systems sense the light that is reflected from objects that are usually some 

distance away from the sensing system. Many applications of HSI technology involve airborne 

and satellite-borne systems. The light that is sensed by a remote sensing system is affected by the 

distance between the system and by the source of the light. Any HSI system must account for these 

effects when comparing sensed spectra to spectral signatures. This technology has been used in 

many applications in geology, agriculture, and military target detection. As each material reflects 

different spectral signature, the HSI systems can identify the materials remotely. In geology, 

hyperspectral imagery has been used to study the geography of the different parts of the Earth’s 

surface, which helps in the observation and study of changes that may take place over time due to 

natural or man-made causes. [32] [33]. In agriculture, the HSI system is also used to study 

characteristics such as soil quality, to determine the best regions for agricultural projects [34]. The 
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HSI systems are also used for military target detection to locate and identify camouflaged tanks or 

bases as shown in Figure 1.12. [35]  

 

     

 

 

 

 

 

 
 

Figure 1.12: HSI remote sensing [35]  

 

HSI systems are also used in the food industry. Automated HSI applications used for quality 

control on production lines is a promising application [36], specifically due to an improvement of 

acquisition time and data processing speeds enabled by modern CMOS and cameras and computer 

processors. HSI system can also be used to detect fungal diseases and bacterial contamination in 

fruits and vegetables by looking for variations in spectra caused by biochemical and 

physicochemical processes associated with the undesirable organisms [37]. HSI has also been 

applied to the detection of food freshness by the measuring the percentage of fat and sugar to 

determine how moisturized the product is [38]. 

 
1.4.3.2 Hyperspectral Imaging Medical applications 

In the last two decades, HSI has been used in several medical applications including: disease 

diagnoses and screening, real-time surgical monitoring, diabetes-related wound monitoring, and 

white/red blood cell differentiation [39], [40], [41]. The details of a selection of these applications 

most closely related to this research effort are provided in the following sections.  

1.4.3.2.1 General Medical Applications: Researchers at the University of Texas Southwestern 

Animal Lab have been using the HSI technology in renal surgery. They use the HSI to monitor 

blood oxygenation levels in real- time before after and during surgery. This will help in preventing 
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the risk of or predicting the likelihood of renal failure after surgery. They also use HSI during the 

implementation of pharmacologic solutions to monitor kidney function to predict what might 

happen to patient during, and after surgery [44]. HSI has also been used in the cases of diabetic 

wounds to investigate hemoglobin saturation to help predict the ulcerations and track the healing 

of the diabetic foot ulcers as shown Figure 1.13 [42]. Ongoing research at WVU is aimed at using 

an HSI system to image and segment human white blood cells flowing in vessels to enable white 

blood cell counting without drawing blood as shown in Figure 1.13 [43]. 

 

 

 

 

 

 

 

 

 
Figure 1.13: (left-top) RGB, and HSI images of healing diabetic foot showing a regular oxygen flow around 

the ulcer, which cannot be seen in the unhealed case in the (left-bottom) [42]. On the right side, HSI of the 

flat field calibration, and the image segmentation of the white blood cells count project [43].  

 
1.4.3.2.1 HSI and Cancer 

In general, optical imaging has also been widely used in oncology applications in both clinical and 

research settings. In fact, hyperspectral imaging has been used in detecting skin cancer in 

dermatology clinics [45]. In addition, many cancer research centers are exploring a variety of HSI-

based research [46], which will enable a large expansion of clinical applications of HSI technology 

in the near future. Examples of different applications of HSI in the cancer field are provided below. 

HSI has been a very useful tool in skin cancer investigation [48]. Several melanoma and skin 

sarcoma cases have been confirmed using HSI system. The HSI noninvasive screening system will 

may increase the speed of diagnoses and melanoma detection as shown Figure 1.14 [47].  
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Figure 1.14: spectrum of different pixels in the skin tissue showing the ability of the hyperspectral system 

of detection skin cancer [47]. 

 

Research conducted by a team at Emory University has demonstrated HIS-based prostate cancer 

detection in mice. The idea is to use the spectral difference of tissues contained in the HSI data in 

order to enhance the detection of cancer tissue. Two different methods have been explored in this 

study. The first was to detect spectral differences, then create a method to highlight the differences 

of the reflectance properties of cancer versus those of normal tissue in tumor-bearing mice and on 

pathology slides. This imaging method may be able to help physicians to dissect malignant regions 

with a safe margin and to evaluate the tumor bed after resection [48]. This study may lead to 

advances in the optical diagnosis of prostate cancer using HSI technology [48]. 

 

 
 

Figure 1.15: a spectrum taken from a tissue showing the spectral reflectance value of normal and prostate 

cancer tissue [48] 
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1.4.4 Data Analysis and Image Processing of Hyperspectral Imaging 

Data Analysis and Image Processing are two main components of a complete imaging system that 

is used for analyze, and process images as well as material detection. These fields use standardized 

algorithms and functions to analyze, explore, and examine an image [49]. The images can also be 

visualized in specific conditions with focusing on regions of interest (ROIs). Image processing 

also allows for performing image analysis, image segmentation, image enhancement, noise 

reduction, geometric transformations, and image registration [50]. It can also be applied on specific 

data information per pixel, so image processing can be used to explore examine a region of pixels 

[49]. Image analysis is the process of extracting meaningful information from images such as 

finding shapes, counting objects, identifying colors, or measuring object properties [50]. 

1.4.4.1 HSI Image processing: In the application of HSI systems, image analysis enables the 

extraction of diagnostically-useful information that is taken from the hyperspectral data cube set 

at the tissue, cellular, and molecular levels [51], [52]. The data that is extracted from the 

hyperspectral images is not only considered a three-dimensional data set, it also provides specific 

spectral information per pixel, so image processing also enables examination of a specific spatial 

region of pixels [51]. Therefore, advanced image analysis, and classification methods for 

hyperspectral datasets are required to extract (unmix) spectral data and classify relevant spectral 

information [52].  Image analysis can also be defined as the process of extracting meaningful 

information from images such as shape detection, object counting, identifying colors, or measuring 

object properties [49] [50] [51]. In addition, the goal of applying hyperspectral imaging in this 

work is not only to identify clear spectral deference between healthy and malignant in breast tissues 

and provide pathology with an additional tool for strategic diagnosis, but also in advanced stages 

to break down the spectral mixtures into a spectral signature of molecular fingerprints with disease 

states and stages [45], [50], [52]. 

A general summary of the basic steps used for hyperspectral image analysis involve preprocessing, 

feature extraction and feature selection, and classification or unmixing, which applies different 

analysis methods to the data cube in order to get a better understanding of the image and spectral 

content and to extract some useful information that cannot be seen or observed using conventional 

RGB camera technology [53], [54]. Chapter 2 talks in more details about image processing, image 
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clustering, and segmentation, explaining why and how applying different algorithms will benefit 

the user. A short description of the two related image processing algorithms used in this research 

effort are provided in the following sections.  

1.4.4.2 Image Processing Algorithms for Hyperspectral Imaging. 

K-means clustering, and Support Vector Machine (SVM), are two different data analysis 

algorithms that is used in this work to provide different ways of analyzing HSI data to help confirm 

diagnosis and detection.  

1.4.4.2.1 K-means is a learning algorithm that can be applied to solve unsupervised data 

classification problems. It starts first by choosing a number of classes (clusters). The main idea is 

to define ‘k’ centers, one for each cluster [56]. These centers should be placed in a certain way 

because of different location causes different result. So, the better choice is to place them as much 

as possible far away from each other [57]. The next step is to take each point belonging to a given 

data set and associate it to the nearest center. In this case, each class will have one centroid, and 

the many times the experiment is running the better stable result will be, also the more data the 

classifier is given, the closer better accurate centroid will be picked [56]. 

1.4.4.2.2 In the case of SVM, it is a classifier that can identifies and creates a hyperplane that 

separates between the different classes [58]. In other words, given labeled training data, the 

algorithm outputs an optimal hyperplane which categorizes new examples figure 2.3 in Chapter 2. 

This will happen only if the data is linearly separable. The optimal hyperplane is the best 

hyperplane that have the maximum separation distance [59], [60]. Different SVM algorithms were 

developed based on how to separate between classes in the data, and that is always depends on the 

data itself [58].  

In summary, the aim of this study is to add a new tool and platform in breast cancer ductal 

carcinoma diagnosis, by evaluating the performance of the optical imaging snapshot hyperspectral 

imager to measure and explore the differences in spectral properties, which may be observed 

between normal and various stages of DCIS breast tissues fixed on biopsy slides. As a result, this 

interdisciplinary work will build a bridge between pathology and hyperspectral optical diagnostic 

imaging in order to reduce time and workload on the pathologist, which can lead to benefit of lead 

reducing time, and increasing the accuracy of diagnoses.  
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1.5 Thesis Overview 

This work effort is aiming for applying Hyperspectral imaging technology to help pathology in 

breast cancer ductal carcinoma diagnosis. Specifically, the HSI system will be trained to image 

pathology biopsy samples from patients and then, in semi-automation method, the samples will be 

sorted by the priority of which samples appears more likely cancer from the others. This step will 

reduce time and workload on the pathologist, which will also lead to more accurate diagnoses. The 

thesis is organized as follows: Chapter 2 describes a theory of light reflectance in different 

materials, then the fundamentals of how hyperspectral imaging works in details, and finally a 

summary of the mathematical approaches of the image processing algorithms used in this study. 

Chapter 3 provides the setup and testing steps of the HSI system, which is the first step to 

understand the hyperspectral imaging system that is used in the work. Also, applying different 

experiments to test the system with different experiments in order to have a clear image of the 

spectrum depends on the light source. Two main experiments are done after the system calibration 

which are called: HSI leaves experiment, and three pathology slides preparation method. Chapter 

3 also provides the cellular imaging samples, where samples of stained and unstained tissues are 

imaged where studying the spectral difference between the normal and cancer tissues as well as In 

situ and invasive mammary cancer in mice. The samples were manually marked by pathologist, to 

show the differences in the spectral reflectance that the HSI system can show between the normal 

and the cancer tissues, as well as the in situ with the invasive cases. Chapter 4 approaches the 

results of applying the image processing algorithms to train the system for the hyperspectral date 

detection. Two different algorithms are used, the first one is K-means algorithm that will be applied 

on unsupervised data and creates two different classes for detection. The second algorithm is 

support victor machine (SVM) that will be applied on a supervised data to test the detection ability  

Finally, the last chapter (Chapter 5), a conclusion of the work with discussion and summary, then 

the future work that might be in continuation of this work 
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Chapter 2 

 

2. Theory  

 

2.1 Introduction 

This chapter provides a detailed description of the theory of light reflectance in different materials, 

how different shapes, structures, and components of materials can react to different light sources, 

and how it relates to hyperspectral imaging. The next sections will provide fundamentals of the 

hyperspectral imager, and how the reflected light travels through the optical components to build 

the hyperspectral image, the hyperspectral data cube. This Chapter also, provides the fundamentals 

of spectrometer, spectral reflectance, spectral signature, and how the overall hyperspectral imaging 

system works. Finally, the last section will include a summary of the mathematical approaches of 

the different image processing algorithms used in this study.  

 

2.2 Basic principles of light  

Light is a form of electromagnetic energy. As light travels through a medium, it interacts with the 

medium in different ways depending on the medium material and other properties. Three of the 

main interactions are: absorption, transmission and reflection as shown in Figure 2.1 [61], [62]. 

Light absorption occurs when the energy is transferred from electromagnetic waves to molecules 

of the medium. [61]. Transmission, however, occurs when electromagnetic waves of the light 

move through a material. Reflection occurs when electromagnetic waves of light reflect off a 

medium [62]. 
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Figure 2.1: light interaction with medium [61] 

 

Light waves range in wavelength from 400-700 nm as shown in Figure 2.2 [61].  Absorption, 

reflection, and transmission are all wavelength-dependent phenomena, a critical component to the 

operation of hyperspectral imagery. 

 

 

 

 

 

 

 

Figure 2.2: light spectrum [61] 
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2.3 The theory of reflectance 

Hyperspectral imaging spectroscopy has the capability to identify or detect specific materials 

based on their spectral reflectance. In order to get accurate and useful results, the hyperspectral 

imager system handles raw image data in several steps, ending by processing the captured data 

with a software by applying algorithms for material spectral reflectance for identification and 

detection [14]. However, spectral reflectance varies upon the nature of materials and the reflected 

surface that interacts with light. Reflectance of light can be clearly understood by understanding 

the Bidirectional Reflectance Distribution Function (BRDF), which quantifies the geometric 

radiance distribution which results from the reflected light [15]. To clearly understand BRDF, it is 

important to explain some of the fundamentals of electromagnetic waves, which leads to defining 

the Fresnel equations, and then the BRDF. 

 

2.3.1 Electromagnetic waves 

The electromagnetic plane wave that has the orthogonal x and y components of the electric field 

vector, which travels in the z direction may be expressed by the following equation: 

 

 

𝜀(𝑧, 𝑡) = ( 𝜀0𝑥𝑖 +  𝜀0𝑦𝑗)𝑒𝑖(𝜔𝑡−�⃗⃗�.𝑧)                       Equation 2.1[62] 

    
 

where 𝜀 is the magnitude and direction of the electric field [V/m] in the x-y plane as a function 

of position, z, and time, t. ε0x, and ε0y, are complex electric field projected onto the x- and y-axes.  

 

�⃗⃗� is the propagation direction vector, or wave vector, given by: 

 

�⃗⃗� =
2𝜋

𝜆
                                                   Equation 2.2 
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where λ is the wavelength The angular frequency ω can be found using : 

𝜔 =
2𝜋𝐶

𝜆
                                                   Equation 2.3 

 

where c is the speed of propagation of light in a vacuum.  

 

 

2.3.2 Fresnel equation and optical scattering 

As light hits an object or surface, reflection, absorption, and transition are summed to unity. Fresnel 

equations provide the reflection and transmission magnitudes of an electromagnetic wave incident 

on a material [15]. The reflection and transmission are a function of the angle and polarization of 

the incident electromagnetic wave [16]. For the purposes of applying the equations, the orthogonal 

polarization components are defined relative to the plane of incidence. The component of the 

electric field perpendicular to the plane of incidence is called S-polarization. Reflection and 

transmission are given by: 

𝑟𝑠 =
𝜀𝑟

𝜀𝑖
𝑠 =

−sin (𝜃𝑖−𝜃𝑡)

sin (𝜃𝑖−𝜃𝑡)
                         Equation 2.4[15] 

 

 

𝑡𝑠 =
𝜀𝑡

𝜀𝑖
𝑠 =

2sin𝜃𝑡 𝑐𝑜𝑠𝜃𝑖)

sin (𝜃𝑖−𝜃𝑡)
                            Equation 2.5[15] 

 

where θt is the transmission angle given by Snell’s law as:  

 

𝜃𝑡 = 𝑠𝑖𝑛−1 (
𝑛𝑖

𝑛𝑡
sin 𝜃𝑖)                                 Equation 2.6 

 

where 𝑛𝑖  and 𝑛𝑡  are the complex indices of refraction of the incident and transmitted mediums 

 

. 

^ ^ 

^ 

^ 
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2.3.3 BRDF equation 

The optical property of a surface light reflection is usually described by the bidirectional 

reflectance distribution function (BRDF). It shows how light is reflected into different directions 

[17]. It is also defined as the ratio of the radiance scattered into the direction described by the 

orientation angles (θr, ɸr) to incident irradiance from (θi, ɸi), as seen in Figure 2.3. 

 

 

𝑓 =
𝐿(𝜃𝑡,ɸ𝑖)

𝐸(𝜃𝑡,ɸ𝑖)
 [𝑠𝑟−1]                                Equation 2.7[62] 

 

 

 

Figure 2.3: The geometry of light reflection [17] 

 

2.4 Hyperspectral imaging system overview 

Hyperspectral imaging is an optical imaging modality that collects and analyzes spectral 

information from a wide range across the electromagnetic spectrum. Hyperspectral imaging also 

has  advantages over regular imaging in that it is provides spectral reflection or absorption 

characteristics of the object being imaged in the form of  spectral channels contained in an image 

data hypercube [17]. The hypercube is essentially a three-dimensional dataset, which means even 

a single pixel contains a feature vector with over 10 dimensions with an entire spectrum of 
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reflectance information [18]. The technology of the hyperspectral imager requires using optical 

sensors, which are adjusted to collect spectral information in several narrow bands or channels, 

and typically these channels are in range between 2-10nm wide. Hyperspectral imaging sensors 

produces image data in dozens or hundreds of narrow spectral bands [18], [19], [63], [64]. HSI 

technology, when properly exploited can be used in optical imaging applications such as satellite 

remote sensing, providing an additional and improved automated terrain analysis, image 

understanding, object detection, and material characterization capabilities, as shown in Figure 1.6 

[17]. Hyperspectral imaging can also be used in optical medical imaging in clinical and research 

applications such as the work described here focused on breast cancer tissue detection (Figure 

2.4). The information that is collected from the imaging system can be analyzed to obtain a 

continuous spectrum for each image pixel or cell. Areas targeted by the imaging system may have 

different biological, and chemical compositions that can detected by the sensor due to differences 

in light reflection or absorption. The image spectra can be compared with field or laboratory 

reflectance spectra in order to recognize and map surface materials such as particular types of 

vegetation or diagnostic minerals associated with ore deposits [63]. Hyperspectral images have 

valuable data, which requires an understanding of exactly what properties of ground materials we 

are trying to measure, and how they relate to the measurements actually made by the hyperspectral 

sensor [63].  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Regular image of the breast tissue, hyperspectral image, and the spectrum of the 

marked pixel. 
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2.4.1 Hyperspectral System Hardware 

The optical and spectral characteristics of a hyperspectral imaging system are determined largely 

by the application requirements [26] [27]; however, all systems have the same basic components 

that are assembled to achieve a common goal: to image the object, and provide both a spectral and 

spatial dataset. The hyperspectral imaging system, basically built together as one optical system, 

consists of a suitable objective lens matched to the spatial and spectral requirements of the 

application [63].  Figure (2.5) shows how the reflected light of the imaged target travels onto the 

entrance slit in the spectrograph. This light is dispersed into different wavelengths by the prism in 

a spectrograph, such as an ImSpector (spectrograph) [64]. The optical slit, imaging spectrograph 

and proper detectors to collect the spectral, and spatial information are all required optical elements 

to build a proper hyperspectral imager. Figure (2.5) also describes how the ImSpector system 

works.  

 

Figure 2.5: Hyperspectral camera hardware 

 

First the reflected light travels through the objective lens then to the slit of the main element of the 

spectrograph. The image that is captured by the camera sensor as a two dimensional image, the 
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spatial position and, λ as the spectral dimension. In order to capture the entire image, snapshots of 

every line across the target area must be captured [64]. The slit, grating and detector characteristics 

determine the spectral resolution as well as spatial resolution is determined by the pixel size. The 

imaging spectrograph elements, and the Prism Grating Prism (PGP) imaging component are 

explained in more details in the following section. 

A) ImSpector (Imaging Spectrograph): The ImSpector - developed by SPECIM manufacturer - 

is an imaging spectrograph that has the capability to be attached and combined with a many 

monochrome imaging systems to form a spectral camera [66], [67]. Figure (2.6) shows the basic 

example of an ImSpector. Each ImSpector consists of an input slit, collimating optics, transmission 

grating and focusing optics as Prism Grating Prism (PGP) in a rugged package [67]. The ImSpector 

produces a flexible wavelength selection that can simultaneously cover a broad spectral range, and 

results of a high quality spectral and spatial resolution image [69].  

B) Hyperspectral Prism Grating Prism (PGP) imaging component: Prism Grating Prism is the 

main component that is located in the heart of the Imaging spectrograph. The PGP is designed as 

two identical prisms: short and long pass filters are placed in between grating and the prisms. The 

main objective controls the spectral response, and both filters within the PGP contain the aperture 

stop. PGP also allows the spectrum to be centered, in which when optimized, refracts the spectrum 

so that the light spots of both ends are similar.  

 

 

 

 

Figure 2.6 ImSpector Imaging Spectrograph 

 

C) Hyperspectral imaging optical filters: Optical filters have been used in the hyperspectral 

imaging systems for the wavelength selection method. Specifically, Tunable Filters (TF) are 

normally used in the hyperspectral imager as shown in Figure 2.7. A TF is a device in which 

spectral transmission can be electronically controlled by applying voltage (in the case of liquid 

crystal Tunable Filter -LCTF-), or acoustic signal (in case of Acousto Optical Tunable Filter -

Lenses,  

PGP component 

Entrance Slit   
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AOTF-). These two filters are the most common electronical filters that have been used in 

hyperspectral systems [66]. 

 

 

Figure 2.7. TF in hyperspectral systems 

 

The main difference between LCTF and the AOTF is that LCTF is made with a stack of polarizers 

and tunable liquid crystal plates that work as band pass filter; whereas the AOTF consists of a 

crystal in which radio frequencies (RF) acoustic waves are used to separate a single wavelength of 

light from a broadband source. The wavelength of light selected is a function of the frequency of 

the RF applied to the crystal [15], [16]. 

 

2.4.2 Spectrometer of imaging system 

The two main structural component of the Hyperspectral imager system are the spectroscopy and 

the imaging systems. As pointed out, the imaging system can be attached to any optical device 

from satellites to microscopes to endoscopic medical systems. Spectroscopy is the study of light 

that is emitted by or reflected from materials and its variation in energy with wavelength [18]. 

Typically, applying light to the imaged target, which can be any type of light source in the 

laboratory or sunlight in the field, in order to diffuse the reflectance and the scattering of targeted 

materials at the surface [18] [19] [20]. In the hyperspectral imaging system, the spectrometer 

measures the reflected light intensity from different materials. The semi-automated algorithm in 

the imager system will then compare the collected information to a built-in spectral library for the 

detection purpose. The detection starts when an optical dispersing element such as a (grating) or 

prism (that can be seen in Figure 2.4) in the spectrometer splits this light into many wavelength 

bands and the energy in each band is measured by a separate detector [65]. The spectrometer then 

will be able to build a set of spectral measurements with using many detectors together, and get 
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measurements of spectral bands as narrow as 2 nanometers over a wide wavelength range [66] 

[67]. 

 

Depending on the application, and the optical component capability, the wavelength range includes 

visible to infrared. The hyperspectral imager that is used for this work covers the visible spectrum 

that’s corresponds to a wavelength range of 400 – 700nm. Hence, the work provided in this study 

cases is designed to focus on the measurements of the light reflected from many adjacent areas on 

the tissue sample surface on the pathology slides. The recent hyperspectral imaging (HSI) systems, 

uses a snapshot imager, which allows creating the whole hyperspectral image cube within one 

snapshot. However, in order to understand how the image is built, Figure 2.8 shows how one 

hyperspectral reflectance build each pixel in the hypercube. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.8: Schematic diagram of the basic elements of an imaging spectrometer 

 

 

2.4.3 Hyperspectral imaging and spectrometer 

This section provides the different terms and keywords that are very important in the understanding 

of a hyperspectral system, from spectral reflectance to spectral signature to spectral library: 

 

Dispersing element 

Imaging Optics 

λ 

Detectors 

Scan Mirror  

Sample image (Breast Cancer Tissue) 
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A) Spectral Reflectance: Spectral reflectance is the key to understanding how hyperspectral 

images are created and built. It is basically the physical and fundamental characteristics in 

spectroscopy of reflected light considering the reflected energy as a function of wavelength to 

measure the spectral information [66]. Reflectance differs within a wide range of wavelengths in 

almost every different material because energy at certain wavelengths is scattered or absorbed to 

different degrees [67]. These reflectance variations are evident when comparing spectral 

reflectance curves for different materials (Figure 2.3) [17]. The overall shape of a spectral curve 

and the position and strength of absorption bands, in many cases, can be used to identify and 

discriminate different materials [65]. 

 

B) Spectral Signature: As reflectance is a physical property of the object surface. It is defined as 

the percentage of incident electromagnetic radiation of each wavelength that is reflected by the 

object [20]. In addition, each object will have  different spectral information depending on the 

physical and chemical properties.That spectral information is called the spectral signature, which 

means that every material will have a spectral signature value, or range of values [20]. 

 

C) Materials and Spectral Imaging: Spectral reflectance that indicates the spectral signature can 

be observed in two different ways: 1) the wide range of the wavelength spectral dimension which 

includes visible light, near infrared, infrared and the rest of the spectrum and 2) the structural and 

chemical makeup of the material itself. That is the reason dealing with hyperspectral data from 

capturing the land surface, is different than the data in which was generated by captured human 

tissue. However, the basic principles of using the hyperspectral imaging will stay the same [64]. 

One of the main parameters that can show differences in the spectral information in different 

materials is chemical composition and crystalline structure, which has a very strong impact on the 

trend of the spectral curve [68]. In addition, wavelength, which is considered the spectral 

dimension, will reflect at different values of absorption of each particular material. This variation 

may be caused by the presence of particular chemical elements or ions, the ionic charge of certain 

elements, and the geometry of chemical bonds between elements, which is governed in part by the 

crystal structure of the material [68]. In this study, however, the work is applied on human and 

mice breast tissue, where the differences within the tissue is very slim because the combination of 
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cells and parameters within tissues have a lot in common that make a very close spectral curve. In 

contrast, cell behavior and some chemical elements such as protein, effects cell and tissue activity 

that cause a difference in the light absorbance, which result in different spectral reflectance values 

[69].    

 

D) Spectral Library and Spectral Detection: A spectral signature is the spectral information that 

can be used to differentiate one material or groups of materials from another [70]. In general cases, 

the spectral signature of a certain material or element is the same, and the absorbance and 

reflectance that reflects the physical and chemical properties will not change. In addition, the 

spectral information of each material within a certain range is saved in what is called a spectral 

library. The spectral library is a digital library created by researchers at the Spectroscopy Lab by 

measuring the spectral reflectance of hundreds of materials in a laboratory setting, creating a useful 

reference resource for material identification in a variety of applications [70].  

 

2.4.4 Hyperspectral data cube  

When comparing between hyperspectral line lcan, and hyperspectral snapshot imaging methods, 

it is important to look at both imaging techniques, as well as advantages and disadvantages of both 

systems. In the case of line scan, each image collects one wavelength after the other, and the field 

of view of the imaging system is fixed in order to build the hypercube as shown in Figure 2.9 [26], 

[27]. However, in the case of the snapshot method, both spatial and spectral information of the 

target are captured with one exposure [29]. The snapshot method is an imaging technique that does 

not require scanning at all. As shown in Figure 2.9, the snapshot camera, has the capability to 

produce a complete spectral data cube in a single integration by directly imaging the target zones 

onto the spectral, and spatial detectors simultaneously [28], [29]. In the line scan method, time and 

stability are required, and it is necessary to wait until all wavelength images have been recorded, 

which that takes between seconds to minutes of measurement time plus few seconds between scans 

depending on the imaged target and the imager capability from illumination and integration 

conditions [25]. 
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Figure 2.9: building the spectral data cube in both line scan, and snapshot systems. 

Thus, the accuracy of the hyperspectral data cube may decrease if an object is moving. The 

snapshot method on the other hand, does not need the time that the line scan uses acquire to build 

the hyperspectral data cube, which is an advantage over using the line scan system, however, its 

spatial and spectral resolutions are limited as the total number of voxels cannot exceed the total 

number of pixels on the camera sensors [28]. In addition, both methods should produce spatial and 

spectral image quality across the output field of the spectrograph that is essentially the same at all 

points on the detector, to result in an image with high spectral resolution [27]. However, if the 

overall resolution is given by a certain number per channel, the line scan will produce an image 

per line to have the full resolution per spectral channel, while the resolution is divided by number 

of spectral channels, in case of snapshot, which then reduces the overall image resolution.  

 

2.4.5 HSI Image processing  

Image processing is a method that is used to get more information and to characterize an image. It 

converts the image into digital form and applies various analysis methods in order to get a better 

understanding of the image and to extract some useful information that cannot be seen or observed. 

Usually, image processing systems treat images as two dimensional signals while applying already 
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set signal processing methods to them [49], [50]. Image processing can also be used to manipulate 

images, and apply many different operations in order to extract, detect, and distinguish new 

information. That however, will allow the user to visualize and present images in different and 

unique way [50], [73]. At the hyperspectral processing stage, geometric registration and calibration 

might be performed to make it possible to compare this data set with other data sets. Feature 

extraction may also be conducted to reduce the dimensionality of data and at the same time to 

increase accuracy by increasing the separability of various classes in the image. In this study, the 

data is normally divided into 2 classes, positive cancer, and negative cancer, which are referred to 

as 0 and 1. At last, the data goes through an interpretation stage depending on different 

applications, which means for different needs there are different processing methods to make full 

use of the data. As in this work, class recognition is only needed for detection, so the data is used 

to identify between classes. More details will be explained in the algorithm sections according to 

the type of data and algorithms used, whether the data is supervised or unsupervised. 

 

A) Image Clustering: The clustering of an image, is an advanced recognition of the complex 

characterization of an image [71], [73]. It also describes an image from the dataset level, with 

certain information required to be able to categorize a certain image or set of images into multiple 

classes or clusters, also be described as image mapping. Image clustering can allow editing and 

dealing with the dataset as group of classes, which is very useful in many image processing 

applications such as feature imaging and image representation [71]. Organization of feature data 

is used to classify an image to a certain cluster. 

 

B) Image Classification: Classification of an image creates multiple classes depending on the 

data contained in the image, so each class will have specifications to group them together as one 

class. Classification also refers to the task of extracting information classes from an image [72], 

[73]. The classifier creates a special environment for each dataset in order to classify each data. 

Classification is a process of multiple steps of studying the data and creating labels, training, and 

testing steps. Classification gets more complex with the size and complexity of the data. There are 

two types of classification: supervised and unsupervised [73]. 
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B-1) supervised classification: A very simple description of a supervised classification is when 

the classification is given to a dataset that is labeled based on a key feature, such as the spectral 

signatures obtained from training samples, to classify an image [73], [74]. Then the classifier can 

create a signature file from the training samples, which is then used by the multivariate 

classification to classify the image. 

B-2) unsupervised classification: The opposite of supervised classification, unsupervised 

classification where classifier is given dataset without labels [73], [75]. The classifier then finds 

spectral classes in a multiband image without the any assigned values from the data provider. The 

Classification treats unsupervised data by providing access to the tools to create the clusters, 

capability to analyze the quality of the clusters, and access to classification tools [75]. 

 

2.4.4.1 Examples of classification algorithms:  

A) Support Vector Machine (SVM) algorithm for supervised data. 

SVM can be described as a classifier that can identify and create a hyperplane that separates 

between the different classes [55], [56]. In other words, given labeled training data, the algorithm 

outputs an optimal hyperplane which categorizes an examples figure 2.8. This will happen only if 

the data is linearly separable. The optimal hyperplane is the best hyperplane that has the maximum 

separation distance, as shown in Figure 2.10. 

 

 

 

 

 

 

Figure 2.10: Hyperplane separating two classes (LSVM) [55] 
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In the case of Linear SVM, the hyperplane an equation is applied to get the optimal hyperplane 

with the max margin. The SVM linear classifier relies on a dot product between data point vectors.  

if.                                 Then the classifier is given by:  

  𝑓(�⃗⃗⃗⃗⃗�) = 𝑠𝑖𝑔𝑛( ∑ 𝛼𝑖𝑦𝑖𝐾 ( 𝑥𝑖⃗⃗⃗⃗⃗⃗⃗, �⃗⃗⃗⃗⃗� + 𝑏)                 𝑖 Equation 2.8[56] 

 

 

  

In MATLAB, the classifier that was used to analyze the dataset generates a nonlinear classifier 

with a Gaussian kernel function. First, it generates one class of points inside the unit disk in two 

dimensions, and another class of points in the annulus from radius 1 to radius 2. Second, it 

generates a classifier based on the data with the Gaussian radial basis function kernel. The default 

linear classifier is obviously unsuitable for this problem, since the model is circularly symmetric 

[57]. Then the classifier will identify the classified with the misclassified points by generating two 

sets of 100 points as follows:  Generate 100 points uniformly distributed in the unit disk. To do so, 

generate a radius r as the square root of a uniform random variable, generate an angle t uniformly 

in (0, 2pi ), and put the point at (r cos( t ), r sin( t )), then generate 100 points uniformly distributed 

in the annulus. The radius is again proportional to a square root, this time a square root of the 

uniform distribution from 1 through 4. Finally, the classifier will compare between both [56], [57]. 

 

B) K-means for unsupervised data. 

K-means is a learning algorithm that is applied to solve unsupervised data classification problems 

[54]. It starts first by choosing number of classes (clusters). The main idea is to define k centers, 

one for each cluster. These centers should be placed in a cunning way because of different k center 

locations causes different result. So, the better choice is to place them as much as possible far away 

from each other [58]. The next step is to take each point belonging to a given data set and associate 

it to the nearest center. In this case each class will have one centroid, and the result becomes more 

stable with increase iterations Also the more data the classifier is given, the better the centroid 

accuracy will be [58], [59]. The equation is given by: 
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𝐽(𝑉) =   ∑ ∑ (‖𝑥𝑖 − 𝑣𝑖‖)2   𝑐
𝑖=1

𝑐
𝑖=1                                   Equation 2.9[58] 

 

 

where ‘||xi - vj||’ is the Euclidean distance between xi and vj., ‘ci’ is the number of data points 

in ith cluster, and ‘c’ is the number of cluster centers.   

 
 

The process starts by randomly selecting ‘c’ cluster centers, then calculating the distance 

between each data point and cluster centers. After that, a data point is assigned to the cluster 

center whose distance from the cluster center is the minimum of all the cluster centers. The new 

cluster center is then recalculated using: 

 

                         𝑣𝑖 = (
1

𝑐𝑖
) ∑ 𝑥𝑖𝑐𝑖

𝑗=1                                         Equation 2.10[59] 

 

where ‘ci’ represents the number of data points in ith cluster. 

Then, again distance between each data point and newly obtained cluster centers is recalculated. 

Finally, if no data point was reassigned, the calculation loop is stopped. Otherwise, it is repeated  

until no changes in the centroid values occur [58]. 

2.5 Summary 

In summary, Hyperspectral imaging is a very useful tool that can be applied in many different 

applications. As an imaging system, it can be adopted to be used in almost any application that can 

use optical imaging from the army to educational institutes, to hospitals and industries. Image 

processing is undeniably important to work with HSI, as the images needs to be analyzed, and 

processed. In this work the algorithms that were used, focused on both classification methods for 

the supervised and unsupervised data to measure the imaging system abilities to detect the spectral 

difference between cancer and normal. The next chapters will provide the different approaches of 

using both algorithms, the accuracy and results. 
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Chapter 3 
 

3. HSI System Evaluation, and Cellular Imaging 

 

3.1 Introduction 

This chapter describes the details of HSI system setup & testing experiment. Prior to 

experimentation, the hyperspectral imager was connected to a microscope and calibrated based on 

a standard process. Section 3.2 in this chapter provides the experiment applied on breast cancer 

tissue sample in order to make sure that the hyperspectral system is ready for the main study of 

this thesis. Sections 3.3 to 3.5 are the cellular imaging sections that provides more details about 

the main studies and the imaged samples. 

The hyperspectral imager was connected to a microscope as shown in Figure 3.1-a. The upright 

microscope used in this setup is a Nikon Optiphot-2 (Figure 3.1-b) with a t 12V-100W LL halogen 

lamp illumination source. The microscope has a three filters, such as a neutral-density filter, which 

were not used in this study.  The objective lens that was used to capture all of the images in this 

study is CF Achromat P40x. 

 

Figure 3.1: a- Hyperspectral imaging system setup Davis lab in WVU Cancer Institute. b - Nikon 

Optiphot-2 

C mount adapter 

Hyperspectral imager 

HSI control and 

display unit 

Nikon Optiphot- 2 

CF objective lens 

Light source 

a b 
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The Arrow snapshot hyperspectral imaging camera from Rebellion Photonics is capable of two 

imaging configurations with two different sets of spectral bands. The configuration that was used 

in this study is 443 x 313 pixel resolution in the spatial domain with 31 bands in spectral domain. 

The spectral range of this system is within the visible light spectrum between 461nm and 641nm. 

The field of view of the hyperspectral camera attached to the microscope with a 40x objective in 

its best resolution is 100µm X 80µm, allowing the capture of many images from a single tissue 

sample, which averaged 8.0x10-5 cm2 for this study, 

3.2 Hyperspectral imaging experiment 

This section provides a description of the tissue sample imaging process. The samples are grouped 

into three main types:  

1. H&E stained of normal and DCIS samples 

2. Unstained samples of normal and DCIS tissues 

3. In situ and invasive tissue samples of mouse mammary tumor 

In the first imaging experiment, the hyperspectral imaging system was applied on 10 samples from 

patients that have tested positive for invasive ductal carcinoma breast cancer. Each patient has two 

H&E tissue samples marked by WVU Pathologist, Dr. James Coad. The West Virginia University 

Institutional Review Board approved this investigation [Protocol 1509816662 (Non-Human 

Subject Research)]. A copy of the approval letter can be found in Appendix C. The second imaging 

experiment includes set of breast tissue samples taken from the same 10 patients, but without 

staining in order to observe the spectral signature of both normal and cancer tissues in an unstained 

state. The last imaging experiment is performed on samples taken from mice that have tested 

positive for invasive ductal carcinoma (IDC) breast cancer and Ductal Carcinoma in Situ (DCIS). 

The West Virginia University Research Compliance Office and Institutional Animal Care and Use 

Committee approved the use of animals from which the mammary tissues were rendered [ACUC 

Protocol 10-1107].  Each mouse has two H&E tissue samples of IDC and DCIS marked by the 

pathologist. This chapter will show a few images of each samples set, with the remaining images 

included in Appendix A. 
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3.2.1 Preparation methods of the Pathology Samples 

This study will apply hyperspectral imaging technology to provide an indication of the spectral 

reflectance differences of ductal carcinoma tissue samples. Figure 3.2 shows an example of H&E 

stained ductal carcinoma biopsy sample taken from a breast cancer patient.  

 

Figure 3.2: Hyperspectral image of a ductal carcinoma tissue. 

In this study, we have collaborated with the Pathology Department at WVU hospital to obtain 

breast ductal carcinoma tumor biopsies fixed on pathology slides prepared in three deferent as 

follow:  

1) The commonly used method in pathology is hematoxylin and eosin (H&E) staining with 

glass coverslip shown in Figure 3.3-a. 

2)  Unstained tumor tissue directly on the slide shown in Figure 3.3-a, and  

3)  Unstained tumor on a slide with a glass coverslip shown in Figure 3.3-a. 

Figure 3.3: The top three images: showing the three methods of preparing the tumor on 

the slides, (a) H&E staining, (b) Unstaining, and (c Unstaining with glass coverslip. 

a b c 
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3.2.2 Experiments Result  

The main imaging experiment focused on the observations of three preparation methods of 

biopsy pathology slides. The spectra for each tissue sample type are shown in Figure 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: (a) Reflectance spectra comparison of three tissue preparation methods: H&E stain, 

unstained with no cover slip, and unstained with cover slip. (b) Reflectance spectra comparison of 

unstained samples (US) and unstained samples with cover slip (USC). (c) Reflectance spectra 

comparison of  H&E and USC, note that the wavelength axis is the band number between 1 to 

31 band and it is ranged from 460nm to 640 nm 

a 

c b 
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The error bars in Figure 3.4 are used to quantify uncertainty in the graph of based on the sample 

population of 50 pixels from each image focused on the same region of interest of the imaged 

tissue in order to show a clear spectral separation between the three preparation methods. Therefore 

the results of three plots from Figure 3.4-b shows a high degree of similarity in the spectra of the 

unstained samples, which means if we move the intensity of one, both will be on top of each 

other with no differences. Although the difference in the intensity values is clear enough for the 

algorithm that was used for analyzing the images to identify it, any change in the light source will 

result in change in the intensity. This result answers the first question posed in this initial study, which 

is: How does the glass coverslip affect the spectral value between two identical samples imaged in the 

exact same condition? Figure 3.4-c answers the second question, which is: Does the H&E stain 

affect the spectral reflectance value between two identical samples imaged in the exact same condition? 

The answer to this question is ‘yes,’ and the reason is because the interaction of light with the stain 

(absorption and reflection) will result in different spectral reflectance from the unstained samples. 

More details will be discussed in the next chapter as a part of main study of this work that is 

focusing on the spectral reflectance of the H&E stained as well as the unstained samples of normal, 

invasive, and pre-invasive ductal carcinoma breast tissues.  

 

3.3 H&E stained Normal and Ductal Carcinoma samples 

In this section, example images from biopsy slides shown from 3 out of 10 patients are displayed 

below for both of normal and DCIS tissue, the rest are included in Appendix A. Each sample was 

imaged by the hyperspectral imager, the analysis of which that will be discussed in Chapter 4.  

Figures 3.5, 3.7, and 3.9 show the H&E stained samples of the normal ducts of the three patients 

with a monochromatic HSI example images of different wavelength channels between 460nm and 

650nm of the normal tissue images to show that the Arrow camera can produce images with clear 

detail of the tissue structure. Figures 3.6, 3.8 and 3.10 also show images of both H&E stained 

samples of the DCIS tissues of the three patients as well as the HSI images of the chosen 

wavelength channels within the same spectral range. 



www.manaraa.com

45 
 

 
 

(a) 

 

Figure 3. 5: (a) Visible image of H&E-stained normal 

duct tissue from Patient 1. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 
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(a) 

 

 

Figure 3.6: (a) Visible image of tissue sample 

containing ductal carcinoma from Patient 1. Region 

inside red box a selected for hyperspectral imaging. (b) 

Hyperspectral images of region highlighted in (a) for 

select wavelengths ranging from 460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 
(b) 
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(a) 

 

 

Figure 3.7:  (a) Visible image of H&E-stained normal 

duct tissue from Patient 2. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 
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(a) 

 

Figure 3.8: (a) Visible image of tissue sample 

containing ductal carcinoma from Patient 2. Region 

inside red box a selected for hyperspectral imaging. (b) 

Hyperspectral images of region highlighted in (a) for 

select wavelengths ranging from 460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 
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(a) 

 

 

Figure 3.9: (a) Visible image of H&E-stained normal 

duct tissue from Patient 3. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 
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(a) 

 

Figure 3.10: (a) Visible image of tissue sample 

containing ductal carcinoma from Patient 3. Region 

inside red box a selected for hyperspectral imaging. (b) 

Hyperspectral images of region highlighted in (a) for 

select wavelengths ranging from 460-650nm. 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 

In this section, a visible images of H&E-stained normal duct, and DCIS tissues were shown from 

the three example patients, as well as the regions that were selected for hyperspectral imaging for 

select wavelengths ranging from 460-650nm. The next section will provide the images of the 

unstained tissue samples that was imaged and evaluated in this study. 

30µm 
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3.4 Unstained Normal and Ductal Carcinoma samples 

In this section also, using the same methodology described in Section 3.3, example images from 3 

out of 10 patients are displayed below of both biopsy samples of normal and DCIS tissues, the rest 

are included in the appendix. However, the samples are unstained in this case. Each sample was 

imaged by the hyperspectral imager, the analysis of which that will be discussed in Chapter 4.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 3.11: (a) Visible image of unstained normal 

duct tissue from Patient 1. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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560nm 575nm 605nm 620nm 650nm 

 

(b) 
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(a) 

Figure 3.12: (a) Visible image of unstained tissue 

sample containing ductal carcinoma from Patient 1. 

Region inside red box a selected for hyperspectral 

imaging. (b) Hyperspectral images of region 

highlighted in (a) for select wavelengths ranging from 

460-650nm. 
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(a) 

 

Figure 3.13: (a) Visible image of unstained normal 

duct tissue from Patient 2. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

 

Figure 3.14: (a) Visible image of unstained tissue 

sample containing ductal carcinoma from Patient 2. 

Region inside red box a selected for hyperspectral 

imaging. (b) Hyperspectral images of region 

highlighted in (a) for select wavelengths ranging from 

460-650nm. 
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(a) 

 

Figure 3.15: (a) Visible image of unstained normal 

duct tissue from Patient 3. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

 

Figure 3.16: (a) Visible image of unstained tissue 

sample containing ductal carcinoma from Patient 3. 

Region inside red box a selected for hyperspectral 

imaging. (b) Hyperspectral images of region 

highlighted in (a) for select wavelengths ranging from 

460-650nm. 

 

 

     
460nm 470nm 485nm 500nm 530nm 

 

     
560nm 575nm 605nm 620nm 650nm 

 

(b) 

 

In this section, a visible images of unstained normal duct, and DCIS tissues were shown from the 

three example patients, as well as the regions that were selected for hyperspectral imaging for 

select wavelengths ranging from 460-650nm. Figures 3.11, 3.13, and 3.15 show the unstained 

samples of the normal ducts of the three patients with a monochromatic HSI example images of 

different wavelength channels between 460nm and 650nm of the normal tissue images to show 

30µm 
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that the Arrow camera can produce images with clear detail of the tissue structure. Figures 3.12, 

3.14 and 3.16 also show images of both unstained samples of the DCIS tissues of the three patients 

as well as the HSI images of the chosen wavelength channels within the same spectral range. The 

next section will provide the images of the unstained tissue samples that was imaged and evaluated 

in this study  

 

 

3.5 H&E Stained In Situ and Invasive Ductal Carcinoma   

 

In this section, the methodology that was used for human breast tissue the previous sections is 

applied on 4 tissue samples from mice that have tested positive for invasive ductal carcinoma 

(IDC) breast cancer and Ductal Carcinoma in Situ (DCIS). Each mouse sample has two H&E 

marked pathology samples of IDC and DCIS tissue. Each sample was imaged by the hyperspectral 

imager, the analysis of which that will be discussed in Chapter 4.  

Figures 3.17, 3.19, and 3.21 show the H&E stained samples of the DCIS of the three mice with a 

monochromatic HSI example images of different wavelength channels between 460nm and 650nm 

of the normal tissue images to show that the Arrow camera can produce images with clear detail 

of the tissue structure. Figures 3.18, 3.20 and 3.22 also show images of both H&E stained samples 

of the IDC tissues of the three mice as well as the HSI images of the chosen wavelength channels 

within the same spectral range. 
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(a) 

Figure 3.17: (a) Visible image of H&E-stained DCIS 

tissue from mouse 1. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

 

Figure 3.18: (a) Visible image of H&E-stained IDC 

tissue from mouse 1. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

Figure 3.19: Visible image of H&E-stained DCIS 

tissue from mouse 2. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

Figure 3.20: (a) Visible image of H&E-stained IDC 

tissue from mouse 2. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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(a) 

Figure 3.21: (a) Visible image of H&E-stained DCIS 

tissue from mouse 2. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm.  
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(a) 

Figure 3.22: (a) Visible image of H&E-stained IDC 

tissue from mouse 3. Region inside red box was 

selected for hyperspectral imaging. (b) Hyperspectral 

images of region highlighted in (a) for select 

wavelengths ranging from 460-650nm. 
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3.6 Summary 

This chapter provides the first, and second tasks of this study that includes the HSI system setup, 

testing, and the cellular imaging. The first task includes a set of two experiments in order to have 

a clear image of the spectrum depends on our light source, as well as learning how the hypercube 

is built according to the hyperspectral imager that is used in this study. Two main experiments are 

done after the system calibration. These experiments are called: HSI leaves experiment, and three 

pathology slides preparation method. The first experiment shows the capability of the HSI system 

to identify, and differentiate between leaves, and their growing stages in the season depends on 

the spectral reflectance of the sun light. The second experiment focused on finding a spectral 

relationship between three different methods of preparing the biopsy slides by the pathologist,    

The second task is the cellular imaging, which include includes three case studies provided in this 

work. Each section included three picked examples from the whole group of the imaged samples. 

The three imaged groups are as follow: H&E stained of normal and DCIS samples, unstained 

samples of normal and DCIS tissues, and finally in situ and invasive of mice mammary tumor. The 

aim of this chapter is to provide a set of examples to show how normal breast, DCIS, and IDC 

tissues would look like as a hyperspectral image, and as an image seen by pathologist under the 

microscope as well as the H&E stained and unstained samples. This chapter has also provided the 

hyperspectral images that includes the Region of Interest (ROI) that was marked by the pathologist 

to show the exact location that needed to be imaged and analyzed using the hyperspectral imager. 

The overall goal of this chapter is to prepare a set of hyperspectral images of the (ROI) to be 

analyzed and processed using two different algorithms for semi automation detection that will be 

shown in chapter 4.   
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Chapter 4 
 

4. Image Evaluation 

 

4.1 Introduction 

This chapter discusses image analysis and evaluation. The large amount of data contained in the 

three-dimensional hyperspectral data cube was evaluated in multiple steps. All images were 

initially manually marked by a pathologist for the purpose of providing ground truth description 

of the tissue samples showing evidence of cancer. This is an important step for training the auto 

detection algorithm, as well as evaluating the accuracy on tissue samples not included in the 

training set. All marked areas on the samples were identified by the pathologist to possess a high 

density of tumor tissue within the designated area. Image processing techniques were applied to 

look at the regions of interest identified by the pathologist and ultimately determine the spectral 

reflectance of tissues in these regions over the visible light wavelength spectrum. The image 

processing and HSI toolboxes contained in both MATLAB and Waikato Environment for 

Knowledge Analysis (WEKA) were used in image processing. WEKA is a collection of machine 

learning algorithms for data mining tasks that were developed at university of Waikato New 

Zealand). In this work, the algorithms are used to learn the about the nature of the hyperspectral 

data in order to understand the spectral reflectance value and how it can be used to differentiate 

between different regions in the tissue samples. The first section of this chapter is focused on 

analyzing the manually picked regions of the hyperspectral images, then plotting the spectral 

reflectance spectrum to compare between the tissues. Finally, spectral reflectance color filtering is 

applied to the images to evaluate the spectral response of the various regions and types of tissue 

visible in the images. In the latter sections of this chapter, a semi-auto algorithm was applied to 

both the supervised, and unsupervised (i.e. labeled, and unlabeled) hyperspectral data sets. 
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4.2 Spectral reflectance determination of manually marked cancer 

tissue 

 

Because ductal carcinoma normally starts spreading from the duct, 4 square regions were randomly 

picked around each normal duct and in high density areas of the ductal carcinoma samples known 

to contain tumorous tissue. The results of hyperspectral images from each patient will consist of:  

1) A comparison of spectral reflectance measurements from each area, and the average with 

error and standard deviation computed for 10 measurements from each of 4 separate 

regions per ample type.  

2) Images with spectral reflectance color filtering applied on the spectral band that shows the 

highest degree of wavelength separation between normal tissue and ductal carcinoma. The 

spectral reflectance color filtering is presented as a color map that is representative of the 

spectral reflectance value.  

 

 

4.2.1. Hyperspectral imaging of H&E-stained normal and DCIS tissue samples from 

patients 1-3  

Spectral reflectance plots of the 4 marked areas of the H&E tissue samples of patient 1 from are 

shown in Figure 4.1. 
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Figure 4.1: Spectral reflectance of each of the 4 marked areas of the 550nm spectral channel  from 
top left to bottom right.     

 

 

 

 

1 
2 

3 

4 

1 

2 

3 

4 



www.manaraa.com

68 
 

 

Figure 4.2: Average response showing spectral reflectance of the cancer and normal tissues. 

The error bars in Figure 4.2 are used to quantify uncertainty in the graph based on an average of 

10 measurements taken from each of the four marked region of interest in Figure 4.1 for both 

normal and cancer tissue. This was done in order to show a clear separation between both tissues 

at 550nm. This method is also applied on all data shown in the following sections 4.2.2, and 4.2.3. 

The Spectral Reflectance Color Filtering (SRCF) method is applied to the hyperspectral images to 

visualize the difference in the spectral reflectance between tissue types present in one biopsy 

sample, as well as between tissues in different sample types (normal and DCIS). The scale in 

Figure 4.3 shows the normalized spectral reflectance intensity values for the normal and DCIS 

samples from Patient 1. The high-intensity regions, denoted by the red/orange color, represents the 

location of the milk ducts as marked by the pathologist. The lower intensity regions denoted by 

the dark blue color, which are the regions of interest for this research effort, represent normal and 

DCIS tissues surrounding the ducts. It can be seen that both normal and DCIS tissue have similar 

low SCRF values, which corresponds to the spectral plot shown in Figure 4.2. This small 
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difference makes it challenging to perform accurate detection by just comparing the difference 

between ‘light’ and ‘dark’ blue in the SCRF images. Additional image analysis must be applied to 

achieve accurate cancer detection. To further illustrate this, results from the H&E-stained samples 

from two additional patients are shown in Figures 4.4-4.7.  

 

 

 
 

  

Figure 4.3: SRCF of both normal duct (Left), and ductal carcinoma (Right), and the spectral 

reflectance normalized scale. 
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The spectral reflectance of the 4 marked areas of the H&E-stained normal and DCIS tissue 

samples from Patient 2 are shown in Figure 4.4 & 4.5, with the SCRF results shown in Figure 4.6 
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Figure 4.4: Spectral reflectance of each of the 4 marked areas of the spectral channel 550nm 

from top left to bottom right.    
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Figure 4.5: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

                                     

Figure 4.6: SRCF of both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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The spectral reflectance plots for the 4 marked areas of the H&E-stained normal and DCIS tissue 

samples from Patient 3 are shown in Figures 4.7 & 4.8, with the SCRF results shown in Figure 

4.9.  
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Figure 4.7: Spectral reflectance of each of the 4 marked areas of the spectral channel 550nm 

from top left to bottom right.    
 

 

 

 

1 

2 

3 

4 

1 

2 3 

4 



www.manaraa.com

73 
 

 

Figure 4.8: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

                                           

 

Figure 4.9: SRCF of both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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4.2.2: Hyperspectral imaging of unstained normal and DCIS tissue samples of from 

Patient 1 

The spectral reflectance plots of 4 marked areas of unstained normal and DCIS tissue samples 

from Patient 1 are shown in Figure 4.10 & 4.11, with the corresponding SCRF images shown in 

Figure 4.12. 

                                                       

 

 

 

1  
2  

3  4  

Figure 4.10: Spectral reflectance of each of the 4 marked areas of the spectral channel 550nm 

from top left to bottom right.    
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Figure 4.11: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: SRCF of both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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4.2.3: Hyperspectral imaging of H&E-stained DCIS and IDC tissues from Mice 1-3 

The spectral reflectance plots of 4 marked areas H&E-stained DCIS and IDC tissue samples 

from Mouse 1 are shown in Figures 4.13 & 4.14, with the corresponding SCRF images shown in 

Figure 4.15.  

 

 

 

 

1  2  

3  4  

Figure 4.13: Spectral reflectance of each of the 4 marked areas of the spectral channel 500nm 

from top left to bottom right.    
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Figure 4.14: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: SRCF of both DCIS (Left), and IDC (Right), and the RICF scale. 
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The spectral reflectance plots of 4 marked areas H&E-stained DCIS and IDC tissue samples 

from Mouse 2 are shown in Figures 4.16 & 4.17, with the corresponding SCRF images shown in 

Figure 4.18.  
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Figure 4.16: Spectral reflectance of each of the 4 marked areas of the spectral channel 500nm 

from top left to bottom right.   
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Figure 4.17: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

                                 

Figure 4.18: SRCF of both DCIS (Left), and IDC (Right), and the RICF scale. 
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The spectral reflectance plots of 4 marked areas H&E-stained DCIS and IDC tissue samples 

from Mouse 3 are shown in Figures 4.19 & 4.20, with the corresponding SCRF images 

shown in Figure 4.21. 

                         

1  2  

3  4  

Figure 4.19: Spectral reflectance of each of the 4 marked areas of the spectral channel 500nm 

from top left to bottom right.    
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Figure 4.20: Average response clearly showing spectral reflectance of the cancer and normal 

tissues. 

 

                                           

Figure 4.21: Spectral reflectance of each of the 4 marked areas of the spectral channel 500nm 

from top left to bottom right.    
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4.3 Selection of image data for training cancer detection 

algorithm 

 

4.3.1 Supervised data for Support Vector Machine (SVM) classifiers using a 

Gaussian algorithm on human-female H&E stained breast tissue 

In this section, the method used to process and analyze images using the HSI toolboxes contained 

in both software MATLAB and. WEKA is described. The SVM methods were applied on 

supervised (labeled) data, and a K-means algorithm were applied on the unsupervised (unlabeled) 

data. As described in Chapter 2, a Gaussian SVM is applied on the data set after preparing the data 

for classification. The data is transferred into 1D and then labeled with two classes, 0 and 1, for 

the system to be able to train and test for testing the classifier accuracy. This classifier is applied 

for the purpose of detection cancer tissue, so the answer that is required is either positive cancer 

or negative cancer, allowing the data to be transferred into 1D for simplicity. Table 4.1, shows the 

classifier accuracy for each patient, and the diagrams follow that describe the prediction and 

classifier accuracy of the tested model for detection. More details are given in the discussion 

following the diagrams.          Table 4.1: SVM algorithm on 10 patients 

 

 

Patient # Accuracy Patient # Accuracy 

1 91.0% 6 98.7% 

2 90.2% 7 91.7% 

3 88.5% 8 85.0% 

4 90.4% 9 87.8% 

5 99.1% 10 79.3% 

Average Accuracy: 90.17% 
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a     b  

c  

Figure 4.22: a- Scatter plot of the SVM algorithm, b- ROC curve of the prediction, c- Confusion matrix 

of the predicted model.  

 

 

    

Classes: 

 0  

 1  
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After applying the trained algorithm on the samples from the patients, the following step is to apply 

the trained algorithm on the testing data for prediction, and detection accuracy. Figure 4.22-a 

shows the results given by a scatter plot of the values for both classes, followed by the ROC curve 

showing the area under the curve= 0.89 in Figure 4.22-b which is supported by the confusion 

matrix in Figure 4.22-c, which shows the confusion matrix of the tested model showing a true 

positive rates of 92% and 84%, false negative rates of 8% and 16%.  

4.3.2 Unsupervised data for K-means algorithm on human- female H&E stained 

breast tissue 

The K-means algorithm described in Chapter 2 was applied to unsupervised (i.e. unlabeled) data. 

The user chooses the number of classes, which is 2 for this study (cancer, and non-cancer), and 

then the algorithm picks the best centroid for each class. The class centroids changes each time the 

algorithm runs until the program stops, i.e. when the numbers of each class do not change, and 

each centroid is considered the best pick. Table 4.2 shows the results of applying K-means 

separately on each set of data from 9 out of 10 patients for training, iterating to find the two best 

values of centroids, and finally, using the known labels of cancer and non-cancer to measure the 

accuracy of each run. The last step is to run the K-means trained algorithm on the 10th patient for 

testing the cancer detection scheme in order to determine if the classifier can identify and detect 

both classes, and then compare the detected results with the ground-truth pathologist diagnosis in 

order to support the algorithm accuracy. The detection results will be shown in the Section 4.5. 

Table 4.2 also shows the prediction accuracy of the algorithm by applying the labels on the data 

by using the centroids that the trained algorithm created. 

Table 4.2: K-Means algorithm results from tissues obtained from Patients 1-9. 

Patient # Centroid1 Centroid2 Accuracy Patient# Centroid1 Centroid2 Accuracy 

1 0.251 0.072 85.38% 6 0.287 0.066 98.34% 

2 0.182 0.062 82.87% 7 0.270 0.096 80.59% 

3 0.209 0.088 79.41% 8 0.223 0.099 82.22% 

4 0.170 0.070 87.38% 9 0.265 0.075 87.84% 

5 0.296 0.046 98.5% 1-9 0.207 0.091 80.27% 

Average Accuracy  85.47% 

 



www.manaraa.com

85 
 

4.3.3   Supervised data for Support Vector Machine SVM classifiers using a 

Gaussian algorithm on unstained human- female breast tissue samples. 

The same method applied in section 4.3.1 to the hyperspectral images from the H&E stained 

samples was then applied to the unstained samples. On the sample, 1600-pixel samples were tested 

using the SVM algorithm. Every pixel is labeled for system training, which is followed by testing. 

10-fold cross validation was applied for accurate results. Table 4.3 presents the accuracy predicted 

detection of the trained algorithm, and the diagrams follow that describes the prediction and 

classifier accuracy of the tested modal for detection. More details are given in the discussion 

follows the diagrams 

Table 4.3: SVM algorithm on unstained sample 

 

 

 

 

a  b  

 

Patient 1-10 Accuracy 

 AVG 94.4% 

Classes: 

 0  

 1  
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c 

 

Figure 4.23: a- Scatter plot of the SVM algorithm, b- ROC curve of the prediction, c- 

Confusion matrix of the predicted model.  

After analyzing the data by training the algorithm on the samples from patients, the following step 

is to apply the trained algorithm on the testing data for prediction and detection accuracy. Figure 

4.23-a shows the results given by a scatter plot of both classes with the prediction, followed by the 

ROC curve showing the area under the curve= 0.95 in Figure 4.23-b. Finally 4.23-c shows the 

confusion matrix of the tested model showing a true positive rates of 97% and 92%, false negative 

rates of 8% and 3%.  

4.3.4 Unsupervised data for K-means algorithm on unstained human- female 

breast samples. 

The same K-means algorithm method that was applied in section 4.3.2 on the stained samples was 

applied and ran on the unstained samples on the average data from the patients for training to create 

2 centroids as seen in Table 4.4.  

Table 4.4: K-means results from unstained sample images. 

Patient# Centroid1 Centroid2 Accuracy 

AVG 0.208 0.085 93.66% 
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As Table 4.4 shows the result of applying the K-means algorithm on the data that was extracted 

from the unstained samples, the trained algorithm created two centroids one for each class as 

explained on the previous section. The trained algorithm then applied on the testing data for 

detection to get an accuracy of 93.66%.   

4.3.5     Supervised data for Support Vector Machine SVM classifiers using a 

Gaussian algorithm on mice models with positive DCIS, and IDC 

The same SVM method that was applied on sections 4.3.1 and 4.3.3 to analyze the H&E-stained 

and unstained tissue samples of the human patients was applied to the unstained mouse tissue 

samples. The predicted classes that are labeled 0, and 1, representing the presence of DCIS IDC 

respectively. Again, 1600-pixel samples were tested using the SVM algorithm, with every pixel 

labeled for system training then testing. 10-fold cross validation was applied for accurate results: 

Table 4.5 presents the accuracy of the detection using the trained algorithm, and the diagrams that 

follow describe the prediction and classifier accuracy of the tested modal for detection. More 

details are given in the discussion following the diagrams 

Table 4.5: SVM algorithm on H&E mice samples 

            

    

Mouse# Accuracy Mouse # Accuracy 

1 90.9% 3 92.8% 

2 94.6% 4 84.2% 

Average Accuracy: 90.17% 
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a  b   

c  

Figure 4.24: a- Scatter plot of the SVM algorithm, b- ROC curve of the prediction, c- 

Confusion matrix of the predicted model.  

After analyzing the data by training the algorithm on the samples from mice models, the following 

step is to apply the trained algorithm on the testing data for prediction, and detection accuracy. 

Figure 4.24-a shows the results given by a scatter plot of both classes with the prediction, followed 

by the ROC curve showing the area under the curve= 0.92 in Figure 4.24-b. Finally 4.24-c shows 

the confusion matrix of the tested model showing a true positive rates of 99% and 83%, false 

negative rates of 1% and 17%.  

Classes: 

 0  

 1  
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4.3.6    Unsupervised data for K-means algorithm on mice models with positive 

DCIS and IDC 

The K-means algorithm was ran on the unstained samples to create 2 centroids, as seen in Table 

4.2. The K-means algorithm method described in Section 4.3.2 was applied to the stained mice 

samples. Table 4.6 shows the results of applying K-means separately on each set of data from 3 

out of 4 mice modals for training and run to create two best values of centroids and finally, use the 

labels to measure the accuracy of each run. The last step is to run the trained K-means algorithm 

on the 4th mouse for detection in order to determine if the classifier can identify and detect both 

classes, and then compare the detected results with the ground truth pathologist diagnosis in order 

to support the algorithm accuracy. The detection results will be shown in the next section 4.5. 

Table 4.6 also shows the prediction accuracy of the algorithm by applying the labels on the data 

by using the centroids that the trained algorithm created. 

Table 4.6: K-means algorithm on Mice samples 

Patient # Centroid1 Centroid2 Accuracy 

1 0.168 0.050 89.5% 

2 0.185 0.047 93.47% 

3 0.174 0.039 88.84% 

1-3 0.149 0.056 83.03% 

 

 

4.5 Applying trained algorithms for semi-automated 

detection 

This section provides a description of the effectiveness of the application of the trained detection 

algorithm for the detection of normal, DCIS, and IDC in random tissue samples from human and 

mice models that were not used in the previous testing or training sample sets. An overview of thie 

application, from image acquisition, training, and application of the detection scheme is shown in 

Figure 4.25. 
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Figure 4.25: hyperspectral imaging, training, and detection. 

 

4.5.1  Cancer detection in human sample 

The trained algorithms were applied samples from patient that was diagnosed with DCIS. The 

samples were marked, and prepared by a pathologist, and then images were captured and processed 

by the hyperspectral imaging system. Figure 4.26 shows the steps taken to provide a ground truth 

that the trained algorithms were successfully able to match the pathologist’s performance at 

detecting difference between normal and cancer. After the samples were prepared, Dr. James Coad 

the Vice-Chair of WVU Pathology diagnosed and marked regions of interest on the samples within 

the entire region of the tissue on the slide. Figure 4.26 also shows the samples from the 9 patients 

that were used in training the K-means algorithm as well as the 10th patient data used for detection. 
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Figure 4.26: Dr. James Coad marking the ROI to compare the detection results of the algorithm 

10 patients  
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The result of training the K-means algorithm on the data that was extracted from the first 9 patients, 

then the trained algorithm was applied on the untrained data that was extracted from the 10th 

patient. The algorithm and successfully detected normal and cancer tissue as shown in Figure 4.27. 

In this figure, the blue boxes indicate the areas containing cancer marked by the pathologist, and 

the red and blue shaded regions are the regions with cancer identified by the hyperspectral 

detection algorithm.   

 

Figure 4.27: The blue boxes indicates the areas marked by the pathologist, the shaded 

areas shows the detection of the K-means algorithm detecting cancer tissues (Red), and 

normal tissues (blue) on the spectral channel 550nm.  

 

 

4.5.2 Mice samples detection 

The method described in Section 4.5.1 was repeated in on the mouse tissue samples. Three out of 

four samples were used for training and the 4th sample was used for testing and detection. The 

trained algorithms were applied on random tissue samples from mice that were diagnosed with 

both IDC, and DCIS. The samples were marked and diagnosed by Dr. Majed Pharaon from WVU 

pathology. Images were then captured and processed by the hyperspectral imaging system. Figure 

4.28 shows that the trained algorithm were successfully able to detect a spectral difference between 

IDC and DCIS with an accuracy of 90%. 
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Figure 4.28: The blue boxes indicates the areas marked by the pathologist, the shaded 

areas shows the detection of the K-means algorithm detecting IDC (Red), and DCIS  

(blue) on the spectral channel 500nm. 

4.6 Results & Summary 

Image evaluation and analysis were applied on three sample groups in order to develop semi-

automated methods to identify the spectral differences between: 

1) normal and DCIS cancer tissues, and  

2) DCIS and IDS tissues, which indicate different stages of breast cancer   

The HSI system was used to image and analyze breast biopsy tissue from human patients, as well 

as mammary tumor tissue extracted from mouse models. The biopsy tissues were fixed and stained 

on pathology paraffin-embedded slides at the WVU Health Sciences Center. Each slide with either 

normal, invasive, or in situ ductal carcinoma was marked by the pathologist. In this study, two 

samples, consisting of normal and DCIS tissue, were obtained from each of 10 patients. There are 

two tissue samples from each mouse as well, but one is invasive and the other one is in situ ductal 

carcinoma. Each slide was imaged by the hyperspectral system, and a manual region of interest 

was chosen for testing the spectral differences, between normal, DCIS, and invasive and DCIS 

tissues. For more accurate results, an algorithm was built to choose random pixels from both 

regions of interest. The region of interest spectrum for chosen pixels within the images of the 

normal, invasive, and DCIS tissues shows spectral separation between both tissues, which at 
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~550nm in most cases. This wavelength was chosen choose for testing the spectral reflectance by 

color filtering. The spectral reflectance color filtering  results show that the spectral reflectance 

values clearly identifies, and separates normal, and DCIS in the spectrum, and also a slight 

difference between invasive and DCIS, as DCIS tissue has higher spectral reflectance value within 

the chosen wavelength band.  

In the second part, two image processing algorithms have been applied on the hyperspectral data of 

the tissue sample images for training the system, and then testing whether or not the system is capable 

of detecting the spectral difference. Each algorithm has a different approach. The first algorithm was 

a supervised Support Vector Machine (SVM) algorithm, where the algorithm is trained on image data 

labeled by a pathologist.  The system then is trained according to the provided labels. Finally, the 

system will randomly pick data that has not been trained and test it. The detection of normal, and 

DCIS in human samples result reached a true positive rates of 97% and 92%, false negative rates of 

8% and 3%, while, the detection of IDC, and DCIS in mice result reached a true positive rates of 

99% and 83%, false negative rates of 1% and 17%. The second algorithm, K-means, was applied 

on unsupervised data, where the system trained itself to divide the data into two classes depending 

on the Euclidean distance. After the system classified two classes, it creates two centroids, one for 

each class. The value of each centroid keeps on changing while the algorithm is running until a 

minimum (or zero) change in distance is reached. Finally, labels were used to measure the 

algorithm accuracy. In the case of H&E-stained samples, the trained algorithm was applied on 

untrained data for testing and detection, and the results were compared with the pathologist 

diagnoses to show that the trained algorithm can differentiate between normal and cancer tissue, 

as well as between different stages of cancer In summary, the hyperspectral imager system shows 

a potential for moving forward to create a baseline in order to make this system ready for clinical 

applications. 
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5. Conclusion and Future Work 

 
Hyperspectral Imaging (HSI) is a sophisticated non-invasive optical imaging modality that has the 

potential to be applied toward medical imaging research and clinical practice. From imaging labs, 

to National Institute of Health (NIH), to cancer institutes, hyperspectral imaging has been an 

optical imaging tool that is used for providing spectral information, which can help in material 

detection. Hyperspectral imaging brings a new hope in breast cancer research and diagnostic 

imaging. Specifically, this research effort introduces a new tool that can help in breast cancer 

detection by providing pathologists with a tool that can potentially make their diagnosis process 

of ductal carcinoma under the microscope easier and more efficient. This work is a collaboration 

between the Lane Dept. of Computer Science and Electrical Engineering, the WVU Pathology 

Department, and the WVU Medicine Mary Babb Randolph Cancer Center.  

 

Figure 5.1: Concept diagram of how HSI can aid the pathologist in cancer detection and diagnosis. 

Pictures (left to right): pathology tech [60], hyperspectral imager system at WVU, image processing DCIS 

samples, pathologist diagnosing a sample on a monitor [59]. 

 

The overall scope of the work is to image samples of breast cancer tissues from different patients 

in order to show the ability of the hyperspectral system to detect spectral differences between 

normal and breast cancer tissues, as well as early and late stages of cancer, which will also effect 

the treatment decision. Figure (5.1), shows how hyperspectral imaging is introduced to pathology 
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to be a bridge connects between pathology assistant or pathology tech, who prepare the samples 

for diagnosis, and the pathologist to make a diagnosis decision.  

The HSI technology was applied on three case studies as follow: 

1) H&E stained tissue samples of normal and DCIS from breast cancer patients  

2) Unstained tissue samples of normal and DCIS from breast cancer patients  

3) H&E stained tissue samples of the DCIS, and IDC of mice models. 

Each of the three cases represents two tissue samples from each patient or mouse model. Each 

sample was imaged by the hyperspectral system and a manual region of interest was chosen for 

testing. The system results showed clear spectral reflectance separation between each of the two 

tissues that was tested in the three case studies, which are the H&E stained normal and Ductal 

carcinoma tissues. The unstained normal and ductal carcinoma tissues. And lastly, invasive and in 

situ mice mammary tumor to show spectral reflectance between breast cancer stages as shown in 

Figure (5.2).  

 

Figure 5.2): left to right, human normal and DCIS H&E tissues, human normal and DCIS 

unstained tissues, mice DCIS and IDC H&E tissues. 

In some cases, the results that showed the largest separation appeared in the 550nm wavelength 

channel of the snapshot hyperspectral camera, making it a good wavelength to pick for testing the 

spectral reflectance color filtering method. The spectral reflectance color filtering method was 
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applied on the 550nm channel, which reflects a scale of colors depends on the spectral reflectance 

value. The results show a slight difference between normal and cancer tissues, while invasive and 

DCIS as DCIS tissue has higher spectral reflectance value for the chosen wavelength channel. In 

the hyperspectral image analysis chapter, two image processing algorithms, SVM and K-means,  

show the potential of building a semi-atomized system that can identify and sort between the samples 

and show the degree of the spectral reflectance difference. Figure (5.3), shows a diagram to explain 

the steps of applying the hyperspectral imaging system starting with imaging the samples, to 

analyzing the images, to train the algorithms on the data, and finally applying the trained algorithms 

for detection. 

 

 

Figure 5.3: hyperspectral imaging, training, and detection. 

 

The detection result reached the highest accuracy of 94.6% with an average accuracy of 90.17% by 

using the supervised SVM algorithm as detection can be seen in Figure 5.4. The second algorithm K-
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means, was applied on unsupervised data, where the system trained itself to divide the data into two 

classes depending on the Euclidean distance.  

    

Figure 5.4: an example of applying SVM trained algorithm on a random samples to detect normal 

and breast cancer.  

Finally, ground truth labeling was used to measure the algorithm accuracy. The highest accuracy of 

this algorithm was 93.47%, where the average accuracy was 88.71%, and applying the algorithm on 

the whole data joined together resulted in a higher accuracy than the average of 76.01%.  

 

Future Work 

The future work that this project is moving toward will be taking two separate paths. The first one 

is to continue testing the hyperspectral system on normal, Ductal Carcinoma in Situ (DCIS), and 

invasive pathology samples but in larger number, which means the patient sample group will be 

expanded. In addition, for more accurate results as well as building a spectral library, 

approximately pure samples are more desired. Working with pathology, normal breast tissues will 

be acquired from the patient, which can be considered negative cancer in pathology report. The 

second path, would be a new cooperation with the animal facility and imaging facility by building 

a new animal study. The study plan includes detaching the hyperspectral camera from the 

microscope and using it as a regular camera and take pictures of whole mice models with breast 

cancer as shown in Figure (5.1), focusing on the breast tissues.  
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Figure 5.5: a- a prototype of hyperspectral camera used to image the outer breast tissue (skin) of 

breast cancer mice models. b- the hyperspectral imaging system, c- WVU Erma Byrd Biomedical 

Research Center, d- new hyperspectral camera model of imec. 

 

In addition, a new hyper4spectral imager could be used, as seen in Figure (5.5). The new camera 

should have more capabilities to capture near IR and IR to be able to go deeper in the tissues in 

addition to the visible spectrum. This will open a new prospective and expand the research to 

include a variety of research ideas with a potential of clinical applications such as directly imaging 

the breast cancer mice modals without the need of imaging the biopsy tissues under the 

microscope, which may lead to a new optical diagnostic imaging system. 

a 

d 

b 

c 



www.manaraa.com

100 
 

References 

 

[1] R. Siegel et al., “Cancer statistics,” Cancer J. Clin. 64(1), 9–29 (2014).   

[2] American Cancer Society annual report (2016) 

[3] G. Lu, and B. Fei, “Medical hyperspectral imaging: a review,” J Biomed 

Opt, 19(1), 10901 (2014). 

[4] B. Saleh., ‘’Fundamental of Photonics’’ 

[5] G. Lu, L. Halig, D. Wang et al., “Spectral-Spatial Classification Using 

Tensor Modeling for Cancer Detection with Hyperspectral Imaging,” Proc 

SPIE, 9034, 903413 (2014). 

[6] Tabar L, Vitak B, Chen HH, Yen MF, et al. Beyond randomized 

controlled trials: organized mammographic screening substantially reduces 

breast carcinoma mortality. Cancer 2001; 91:1724-1732  

[7] D. BRADY R,. ‘’OPTICAL IMAGING AND SPECTROSCOPY’’ 

[8] H. Akbari, L. V. Halig, D. M. Schuster et al., “Hyperspectral imaging and 

quantitative analysis for prostate cancer detection,” J Biomed Opt, 17(7), 

076005 (2012). 

[9] H. Akbari, L. V. Halig, H. Zhang et al., “Detection of Cancer Metastasis 

Using a Novel Macroscopic Hyperspectral Method,” Proc SPIE, 8317, 

831711 (2012). 



www.manaraa.com

101 
 

[10] M. S. Chin, B. B. Freniere, Y. C. Lo et al., “Hyperspectral imaging for 

early detection of oxygenation and perfusion changes in irradiated skin,” J 

Biomed Opt, 17(2), 026010 (2012). 

[11] B. S. Sorg, B. J. Moeller, O. Donovan et al., “Hyperspectral imaging of 

hemoglobin saturation in tumor microvasculature and tumor hypoxia 

development,” J Biomed Opt, 10(4), 44004 (2005). 

[12] J. Galeano, R. Jolivot, F. Marzani et al., “Unmixing of human skin 

optical reflectance maps by Non-negative Matrix Factorization algorithm,” 

Biomedical Signal Processing and Control, 8(2), 169-175 (2013). 

[13] A. A. Fawzi, N. Lee, J. H. Acton et al., “Recovery of macular pigment 

spectrum in vivo using. 

[14] D. Roblyer et al., “Multispectral optical imaging device for in vivo 

detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008). 

[15] S. M. Ismail et al., “Observer variation in histopathological diagnosis 

and grading of cervical intraepithelial neoplasia,” Br.Med. J. 298(6675), 707–

710 (1989). 

[16] G. Lu et al., “Spectral-spatial classification using tensor modeling for 

cancer detection with hyperspectral imaging,” Proc. SPIE 9034, 903413 

(2014). 

[17] R. Pike et al., “A minimum spanning forest based hyperspectral image 

classification method for cancerous tissue detection,” Proc. SPIE 9034, 

90341W (2014). 



www.manaraa.com

102 
 

[18] G. Lu et al., “Hyperspectral imaging for cancer surgical margin 

delineation: registration of hyperspectral and histological images,” Proc. 

SPIE 9036, 90360S (2014). 

[19] K. Masood and N. Rajpoot, “Texture based classification of 

hyperspectral colon biopsy samples using CLBP,” in IEEE Int. Symposium 

on Biomedical Imaging: From Nano to Macro, 2009. ISBI '09, Boston, 

Massachusetts, pp. 1011–1014 (2009). 

[20] K. Masood, “Hyperspectral imaging with wavelet transform for 

classification of colon tissue biopsy samples,” Proc. SPIE 7073, 707319 

(2008). 

[21] X. Qin et al., “Automatic segmentation of right ventricle on ultrasound 

images using sparse matrix transform and level set,” Proc. SPIE 8669, 

86690Q (2013). 

[22] S. V. Panasyuk et al., “Medical hyperspectral imaging to facilitate 

residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–

446 (2007). 

[23] E. Claridge and D. Hidovic-Rowe, “Model based inversion for deriving 

maps of histological parameters characteristic of cancer from ex-vivo 

multispectral images of the colon,” IEEE Trans Med Imaging 33(4), 822–835 

(2014). 



www.manaraa.com

103 
 

[24] X. Qin and B. Fei, “Measuring myofiber orientations from high 

frequency ultrasound images using multiscale decompositions,” Phys. Med. 

Biol. 59(14), 3907–3924 (2014). 

[25] X. Qin et al., “Extracting Cardiac Myofiber Orientations from High 

Frequency Ultrasound Images,” Proc. SPIE 8675, 867507 (2013). 

[26] T. G. Kolda and B. W. Bader, “Tensor decompositions and 

applications,” SIAM Rev. 51(3), 455–500 (2009). 

[27] T. Vo-Dinh, Ed., Biomedical Photonics Handbook, Boca Raton, FL: 

CRC, 2003. 

[28] T. Vo-Dinh, M. Panjehpour, B.D. Overholt, C. Farris, and R. Sneed, “In 

vivo cancer diagnosis of the esophagus using differential normalized 

fluorescence (DNF) indices,” Laser in Surgery and Medicine, vol. 16, pp. 41–

47, 1995. 

[29] H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka, “Hyperspectral 

imaging and diagnosis of intestinal ischemia,” in Proc. 30th Annu. Int. Conf. 

IEEE EMBC, Vancouver, BC, Canada, Aug. 2008, pp. 1238–1241. 

[30] Y. Kosugi and H. Akbari, “Hyperspectral imaging: A new modality in 

surgery,” in Recent Advances in Biomedical Engineering, G. R. Naik, Ed. 

Austria: In-Tech publisher, 2009, pp. 223–240. 

[31] S. Friedland, D. Benaron, S. Coogan, D. Y. Sze, and R. Soetikno, 

“Diagnosis of chronic mesenteric ischemia by visible light spectroscopy 

during endoscopy,” Gastrointest. Endosc., vol. 65, no. 2, pp. 294–300, Feb. 

2007. 

[32] M. E.Martin,M.B.Wabuyele, K. Chen, P.Kasili, M. Panjehpour,M. Phan, 

B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-

dinh,“Development of an advanced hyperspectral imaging (HSI) system with 



www.manaraa.com

104 
 

applications for cancer detection,” Ann. Biomed. Eng., vol. 34, no. 6, pp. 

1061–1068, Jun. 2006. 

[33] Tuan V D, David L S, Nusundi B W, et al. A hyperspectral imaging 

system for in vivo optical diagnostics. IEEE Eng Med Biol, 2004, 

23(5): 40�49 

[34] Li H B, Shu R, Xue Y Q. Pushbroom hyperspectral imager and its 

potential application to oceanographic remote sensing. J Infrared Millim 

Waves (in Chinese), 2002, 21(6): 429�433 

[35] Xiao G H, Shu R, Xue Y Q. Design of microscopic hyperspectral 

imaging system. Opt Prec Eng (in Chinese), 2004, 12(4): 367�372 

[36] Martin A A, James B C, David M H. Multispectral imaging of burn 

wounds: A new clinical instrument for evaluating burn depth. IEEE T Bio-

Med Eng, 1988, 35 (10): 842�850 

[37] Martinez L. A non-invasive spectral reflectance method for mapping 

blood oxygen saturation in wounds. In: Proceedings of the 31st Applied 

Imagery Pattern Recognition Workshop. Washington D.C.:IEEE Computer 

Society, 2002. 112�116 

[39] Seong G K, Zheng D, Matthew M, et al. Hyperspectral fluorescence 

image analysis for use in medical diagnostics, advanced biomedical and 

clinical diagnostic systems III. Proc SPIE, 2005, 5692: 21�28 

[40] Matt E M, Wabuyelea M B, Panjehpourb M, et al. Dual modality 

fluorescence and reflectance hyperspectral imaging: Principle and 

applications. Proc SPIE, 2005, 5692: 133�139 

[41] R. O. Green, M. C. Helmlinger, J. E. Conel, and J. van den Bosch, 

“Inflight validation of the calibration of Airborne Visible/Infrared 

Spectrometer in 1993,” Proc. SPIE 2231, 177-185 (1994). 



www.manaraa.com

105 
 

[42] D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, 

Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of 

MOBY,” Proc. SPIE 4483, 64 (2002). 

[43] S. Richtsmeier, R. Sundberg, A. Berk, S. Adler-Golden, and R. Haren, 

“Full spectrum scene simulation,” Proc. SPIE 5425, 530-537 (2004). 

[44] Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, 

“Simple spectral stray light correction method for array spectrometers,” Appl. 

Opt. 45, 1111-1119 (2006). 

[45] Abbott, J. A., R. Lu, B. L. Upchurch, and R. L. Stroshine. 

1997.Technologies for non–destructive quality evaluation of fruits and 

vegetables. Horticultural Reviews 20: 1–120. 

[46] Albers, B., J. DiBenedetto, S. Lutz, and C. Purdy. 1995. More efficient 

environmental monitoring with laser–induced fluorescence imaging. 

Biophotonics Int. Nov.: 42–54. 

[47] Borregaard, T., H. Nielsen, L. Norgaard, and H. Have. 2000. Crop–weed 

discrimination by line imaging spectroscopy. J. Agri. Eng. Res. 75: 389–400. 

[48] Chappelle, E. W., F. M. Wood, J. E. McMurtrey, and W. W. Newcomb. 

1984. Laser induced fluorescence of green plants: 1. A technique for the 

remote detection of plant stress and species differentiation. Appl. Optics 23: 

134–138. 

[49] Goetz, Alexander F.H., and Boardman, J.W. (1997). Atmospheric 

Corrections: On Deriving Surface Reflectance from Hyperspectral Imagers. 

In Descour, Michael R. and Shen, S.S. (eds.), Imaging Spectrometry III: 

Proceedings of SPIE, 3118, 14-22.  

[50] Van der Meer, Freek (1994). Calibration of Airborne Visible/Infrared 

Imaging Spectrometer Data (AVIRIS) to Reflectance and Mineral Mapping 

in Hydrothermal Alteration Zones: An Example from the “Cuprite 

MiningDistrict”. Geocarto International, 3, 23-37. 



www.manaraa.com

106 
 

[51] Adams, John B., Smith, M.O., and Gillespie, A.R. (1993). Imaging 

Spectroscopy: Interpretation Based on Spectral Mixture Analysis. In Pieters, 

Carle M. and Englert, Peter A.J. (eds.), Remote  Geochemical  Analysis: 

Elementatl and Mineralogic Composition. Cambridge, UK: Cambridge 

University Press, pp. 145-166. 

[52] Clark, R.N., Gallagher, A.J., and Swayze, G.A. (1990). Material 

absorption band depth mapping of imaging spectrometer data using a 

complete band shape least-squares fit with library reference spectra. 

Proceedings of the Sec-ond Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) Workshop, JPL Publication 90-54, pp. 176-186. 

[53] G. Lu, L. Halig, D. Wang et al., “Spectral-spatial classification for 

noninvasive cancer detection using hyperspectral imaging,” J Biomed Opt, 

19(10), 106004 (2014). 

[54] G. Lu, L. Halig, D. Wang et al., “Hyperspectral Imaging for Cancer 

Surgical Margin Delineation: Registration of Hyperspectral and Histological 

Images,” Proc SPIE, 9036, 90360s (2014). 

[55] Pike, S. K. Patton, G. Lu et al., “A Minimum Spanning Forest Based 

Hyperspectral Image Classification Method for Cancerous Tissue Detection,” 

Proc SPIE, 9034, 90341w (2014). 

[56] American Cancer Society. Detailed Guide: Breast Cancer. 2014. 

Accessed at www.cancer.org/Cancer/BreastCancer/DetailedGuide/index on 

September 3, 2015. 

[57] Centers for Disease Control and Prevention. National Breast and 

Cervical Cancer Early Detection Program. Accessed at 

www.cdc.gov/cancer/nbccedp/about.htm on September 3, 2015. 



www.manaraa.com

107 
 

[58] Kushi LH, Doyle C, McCullough M, et al. American Cancer Society 

guidelines on nutrition and physical activity for cancer prevention: Reducing 

the risk of cancer with healthy food choices and physical activity. CA Cancer 

J Clin. 2012;62:30-67. 

[59] Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of 

digital versus film mammography for breast-cancer screening. N Engl J Med. 

2005;353:1773-1783. 

[60] Landarebe, D. Hyperspectral image data analysis. IEEE Signal 

Processing Magazine(2002),17-28. 

[61] Li, Z., Li, L., Zhang, R., and Ma, J. An improved classification method 

for hyperspectral data based on spectral and morphological information. 

International Journal of Remote Sensing(2011), vol.32, 2919-2929. 

[62] Gamps-Valls, G., Tuia, D., Bruzzone, L., and Atli Benediktsson, J. 

Advances in Hyperspectral Image Classification: Earth monitoring with 

statistical learning methods. Signal Processing Magazein, IEEE Journal 

(2014), 1007-1011. 

[63] Starr, C. Biology: Concepts and Application, Thomson Brooks/Cole, 

2005. 

[64] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and 

Techniques., Morgan Kaufmann Publishers, 2011. 

[65] D. Allen ; S. Maxwell ; Karel J. Zuzak.; ‘‘Hyperspectral image 

projection of a pig kidney for the evaluation of imagers used for oximetry’’ 

[66] Kumar, Abbas, Aster;  ‘’Robbins Basic Pathology’’ 

[67] D. Kopans; ‘’Breast Imaging’’ 



www.manaraa.com

108 
 

[68] K. Heichman and J. M. Roberts, Cell 79, 557 (1994); J. Wuarin and P. 

Nurse, ibid. 85, 785 (1996). 

[69] T. Hunter and J. Pines, ibid. 79, 573 (1994). 

[70] M. Hall and G. Peters, Adv. Cancer Res. 68, 67 (1996). 

[71] Johns Hopkins Pathology Sidney Kimmel Cancer Center at Johns 

Hopkins. 

[72] R.Weinberg; ‘’Biology of Cancer’’ 

[73] Jemal A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10-

30.68:208-12. 

[74] Duffy SW, et al. The impact of organized mammography service 

screening on breast carcinoma mortality in seven Swedish counties. Cancer. 

2002;95:458-69. 

[75] Thomas DB, et al. Randomized trial of breast self-examination in 

Shanghai: final results. J Natl Cancer Inst. 2002;94:1445-57. 

[76] Semiglazov VF, et al. Evaluate the significance of self-examination for 

the early detection of breast cancer]. Vopr Onkol. 2003;49:434-41 

[77] Ellman R, et al. Breast self-examination programs in the trail of early 

detection of breast caner: ten year findings. Br J Cancer. 1993. 

[78] Smith RA, et al. American Cancer Society guidelines for breast cancer 

screening: update 2003. CA Cancer J Clin. 2003;53:141-69 

[79] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of 

Propagation, Interference and Diffraction of Light, 1999, Cambridge Univ.  

[80] L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging, 

2007, Wiley 

[81] C. Bohren and D. Huffman, Absorption and Scattering of Light by Small 

Particles, 1983, Wiley-Interscience 



www.manaraa.com

109 
 

[82] A. Ishimaru, Wave Propagation and Scattering in Random Media, 1999, 

IEEE 

[83] R. R. Anderson and J. A. Parrish, "The optics of human skin", J. 

Investigative Dermatol., vol. 77, no. 1, pp. 13-19, 1981 

[84] A. N. Bashkatov, "Optical properties of human skin, subcutaneous and 

mucous tissues in the wavelength range from 400 to 2000 nm", J. Phys. D: 

Appl. Phys., vol. 38, no. 15, pp. 2543-2555, 2005 

[85] S.Yoon, K. Lawrence, W. Windham, G. Heitschmidt,; ‘’Line-scan 

hyperspectral imaging system for real-time inspection of poultry carcasses 

with fecal material and ingesta’’ 2011 

[86] Chein-I Chang (31 July 2003). Hyperspectral Imaging: Techniques for 

Spectral Detection and Classification. Springer Science & Business Media. 

ISBN 978-0-306-47483-5. 

[87] Hans Grahn; Paul Geladi (27 September 2007). Techniques and 

Applications of Hyperspectral Image Analysis. John Wiley & Sons. ISBN 

978-0-470-01087-7. 

[88] S.M. Kay, Fundamentals of Statistical Signal Processing. Englewood 

Cliffs, NJ: Prentice Hall, 1998. 

[89] J.B. Adams, M.O. Smith, and A.R. Gillespie, “Remote geochemical 

analysis: Elemental and mineralogical composition,” in Imaging 

spectroscopy: Interpretation Based on Spectral Mixture Analysis, C.M. 

Pieters and P.A.J. Englert, Eds. Cambridge, U.K.: Cambridge Univ. Press, 

1993, pp.145-166. 

[90] A.D. Stocker and A. Schaum, “Application of stochastic mixing models 

to hyperspectral detection problems,” SPIE Proc., vol. 3071, April 1997. 

[91] A. Schaum and A. Stocker, “Spectrally-selective target detection,” in 

Proc.ISSSR, 1997. 



www.manaraa.com

110 
 

[92] C. Robison, C. Kolanko, T. Bourlai, J. Dawson, "Imaging of blood cells 

based on snapshot Hyper-Spectral Imaging systems", in Algorithms and 

Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery 

XXI, Miguel Velez-Reyes; Fred A. Kruse, Editors, Proceedings of SPIE Vol. 

9472 (SPIE, Bellingham, WA 2015), 94721L. 

[93] D. Allen; S. Maxwell; J. Rice; R. Chang; M. Litorja; J. Hwang; J. 

Cadeddu; E. Livingston; E. Wehner; K. Zuzak; ‘’Hyperspectral image 

projection of a pig kidney for the evaluation of imagers used for oximetry’’ 

2011 

[94] D. T. Dicker et al., “Differentiation of normal skin and melanoma using 

high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 

(2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

111 
 

Appendix A 

Images of H and E Stained normal and DCIS samples with the manually 

picked spectral reflectance regions: 

A-1: patient 1 

 

          

 

H&E stained sample of normal duct (Left), HSI (Right) 

 

         

 

H&E stained sample of ductal Carcinoma (Left), HSI (Right) 
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A-2: Patient 2 

 

 

           

 

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

 

              

 

H&E stained sample of ductal Carcinoma (Left), HSI (Right) 
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A-3: Patient 3 

 

          

 

H&E stained sample of normal duct (Left), HSI (Right) 

 

               

 

H&E stained sample of ductal Carcinoma (Left), HSI (Right) 
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A-4: Patient 4 

         

       

 H&E stained sample of normal duct (Left), HSI (Right) 

 

 

          

 

H&E stained sample of ductal Carcinoma (Left), HSI (Right) 
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Spectral Reflectance of the 4 marked areas: 

 

            

 

 

 

Spectral reflectance of each of the 4 areas from top left to bottom right.    
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

                                           

 

SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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A-5: Patient 5 

 

             

 

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

          

 

 H&E stained sample of normal duct (Left), HSI (Right) 

 

 

5µm 50µm 

5µm 100µm 
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Spectral Reflectance of the 4 marked areas: 

 

               

 

 

 Spectral reflectance of each of the 4 areas from top left to bottom right.    
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

            

 

SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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A-6: Patient 6 

 

 

            

       

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

            

 

 H&E stained sample of ductal carcinoma (Left), HSI (Right) 

20µm 5µm 

200µm 5µm 
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Spectral Reflectance of the 4 marked areas: 

 

                

 

 

spectral reflectance of each of the 4 areas from top left to bottom right.    
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

 

           

 

SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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Patient 7: 

 

 

            

       

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

           

 

H&E stained sample of ductal carcinoma (Left), HSI (Right) 

 

 

5µm 

5µm 
100µm 
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Spectral Reflectance of the 4 marked areas: 

 

            

   

:spectral reflectance of each of the 4 areas from top left to bottom right.    
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

            

SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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A-8: Patient 8 

 

 

               

       

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

            

 

H&E stained sample of ductal carcinoma (Left), HSI (Right) 

 

 

20µm 

100µm 
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5µm 
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Spectral Reflectance of the 4 marked areas: 

 

                

 
Spectral reflectance of each of the 4 areas from top left to bottom right.   
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

 

           

 

: SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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A-10 Patient 10 

 

 

            

       

H&E stained sample of normal duct (Left), HSI (Right) 

:  

 

           

 

H&E stained sample of ductal carcinoma (Left), HSI (Right) 
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100µm 5µm 
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Spectral Reflectance of the 4 marked areas: 

 

                                                  

 

 

spectral reflectance of each of the 4 areas from top left to bottom right.   
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

             

 

SRCF on both normal duct (Left), and ductal carcinoma (Right), and the RICF scale. 
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A-11: Mouse 4 

 

 

         

       

H&E stained sample of normal duct (Left), HSI (Right) 

 

 

         

 

H&E stained sample of ductal Carcinoma (Left), HSI (Right) 

 

 

5µm 

5µm 100µm 

100µm 
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Spectral Reflectance of the 4 marked areas: 

 

            

 

  

  

spectral reflectance of each of the 4 areas from top left to bottom right.    
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Average spectral reflectance of the 4 areas with standard deviation applied. 

 

 

Apply Spectral Reflectance Color Filtering (SRCF) method. 

SRCF method is applied on the samples to visualize the difference in the spectral reflectance 

between both samples where the dark blue reflects the lowest reflectance intensity value  

 

                                                                                                          

 

SRCF on both DCIS (Left), and IDC (Right), and the RICF scale. 
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Appendix B 

Weka Software for SVM data detiction: 

Key_D
ataset 

Key_
Run 

Key_
Fold Key_Scheme Key_Scheme_options 

Key_Scheme_
version_ID 

Date_
time 

test4 1 1 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 

test4 1 2 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 

test4 1 3 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 

test4 1 4 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 

test4 1 5 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 

test4 1 6 
weka.classifiers.fun
ctions.LibSVM 

'-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 
0.1 -model 
C:\\Users\\yasser\\Downloa
ds -seed 1' 14172 

2.02E
+07 
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Number_of_traini
ng_instances 

Number_of_testi
ng_instances 

Number_c
orrect 

Number_i
ncorrect 

Number_
unclassifi
ed 

Percent
_correct 

Percent_i
ncorrect 

111 13 8 5 0 
61.5384

6 38.46154 

111 13 7 6 0 
53.8461

5 46.15385 

111 13 8 5 0 
61.5384

6 38.46154 

111 13 8 5 0 
61.5384

6 38.46154 

112 12 7 5 0 
58.3333

3 41.66667 

112 12 9 3 0 75 25 

Percent_u
nclassified 

Kappa_
statisti
c 

Mean_abs
olute_erro
r 

Root_mean
_squared_er
ror 

Relative_a
bsolute_er
ror 

Root_relative_
squared_error 

SF_prior
_entrop
y 

SF_sche
me_ent
ropy 

0 
0.2696

63 0.384615 0.620174 76.87075 123.9455 13.0135 5370 

0 
0.1333

33 0.461538 0.679366 92.2449 135.7755 13.0135 6444 

0 
0.2696

63 0.384615 0.620174 76.87075 123.9455 13.0135 5370 

0 
0.1975

31 0.384615 0.620174 76.87075 123.9455 13.0135 5370 

0 
0.1666

67 0.416667 0.645497 83.33333 129.0994 12 5370 

0 0.5 0.25 0.5 50 100 12 3222 
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